

Graph Theoretic Methods in
Multiagent Networks

This page intentionally left blank

Graph Theoretic Methods in
Multiagent Networks

Mehran Mesbahi and Magnus Egerstedt

PRINCETON UNIVERSITY PRESS

PRINCETON AND OXFORD

Copyright c© 2010 by Princeton University Press

Requests for permission to reproduce material from this work
should be sent to Permissions, Princeton University Press

Published by Princeton University Press,

41 William Street, Princeton, New Jersey 08540

In the United Kingdom: Princeton University Press,

6 Oxford Street, Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Mesbahi, Mehran.
Graph theoretic methods in multiagent networks / Mehran Mesbahi and Magnus

Egerstedt.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-691-14061-2 (hardcover : alk. paper) 1. Network analysis (Planning)–
Graphic methods. 2. Multiagent systems–Mathematical models. I. Egerstedt, Mag-
nus. II. Title.
T57.85.M43 2010
006.3–dc22

2010012844

British Library Cataloging-in-Publication Data is available

The publisher would like to acknowledge the authors of this volume
for providing the camera-ready copy from which this book was printed

Printed on acid-free paper. ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

v

To our very own multiagent systems

Maana, Milad, and Kathy (M.M.)
Annika, Olivia, and Danielle (M.E.)

This page intentionally left blank

Contents

Preface xi

Notation xv

PART 1. FOUNDATIONS 1

Chapter 1. Introduction 3
1.1 Hello, Networked World 3
1.2 Multiagent Systems 4
1.3 Information Exchange via Local Interactions 8
1.4 Graph based Interaction Models 10
1.5 Looking Ahead 12

Chapter 2. Graph Theory 14
2.1 Graphs 14
2.2 Variations on the Theme 20
2.3 Graphs and Matrices 22
2.4 Algebraic and Spectral Graph Theory 27
2.5 Graph Symmetries 33

Chapter 3. The Agreement Protocol: Part I–The Static Case 42
3.1 Reaching Agreement: Undirected Networks 46
3.2 Reaching Agreement: Directed Networks 48
3.3 Agreement and Markov Chains 58
3.4 The Factorization Lemma 61

Chapter 4. The Agreement Protocol: Part II–Lyapunov and LaSalle 72
4.1 Agreement via Lyapunov Functions 72
4.2 Agreement over Switching Digraphs 76
4.3 Edge Agreement 77
4.4 Beyond Linearity 81

Chapter 5. Probabilistic Analysis of Networks and Protocols 90
5.1 Random Graphs 90
5.2 Agreement over Random Networks 93
5.3 Agreement in the Presence of Noise 100
5.4 Other Probabilistic Models of Networks 108

viii CONTENTS

PART 2. MULTIAGENT NETWORKS 115

Chapter 6. Formation Control 117
6.1 Formation Specification: Shapes 118
6.2 Formation Specification: Relative States 123
6.3 Shape based Control 127
6.4 Relative State based Control 130
6.5 Dynamic Formation Selection 143
6.6 Assigning Roles 151

Chapter 7. Mobile Robots 159
7.1 Cooperative Robotics 160
7.2 Weighted Graph based Feedback 162
7.3 Dynamic Graphs 167
7.4 Formation Control Revisited 169
7.5 The Coverage Problem 176

Chapter 8. Distributed Estimation 191
8.1 Distributed Linear Least Squares 191
8.2 Pulsed Intercluster Communication 199
8.3 Implementation over Wireless Networks 208
8.4 Distributed Kalman Filtering 212

Chapter 9. Social Networks, Epidemics, and Games 226
9.1 Diffusion on Social Networks The Max Protocol 226
9.2 The Threshold Protocol 229
9.3 Epidemics 233
9.4 The Chip Firing Game 243

PART 3. NETWORKS AS SYSTEMS 251

Chapter 10. Agreement with Inputs and Outputs 253
10.1 The Basic Input Output Setup 253
10.2 Graph Theoretic Controllability: The SISO Case 260
10.3 Graph Theoretic Controllability: The MIMO Case 269
10.4 Agreement Reachability 276
10.5 Network Feedback 280
10.6 Optimal Control 282

Chapter 11. Synthesis of Networks 293
11.1 Network Formation 293
11.2 Local Formation Games 294
11.3 Potential Games and Best Response Dynamics 299
11.4 Network Synthesis: A Global Perspective 305
11.5 Discrete and Greedy 309
11.6 Optimizing the Weighted Agreement 312

CONTENTS ix

Chapter 12. Dynamic Graph Processes 319
12.1 State dependent Graphs 319
12.2 Graphical Equations 323
12.3 Dynamic Graph Controllability 326
12.4 What Graphs Can Be Realized? 336
12.5 Planning over Proximity Graphs 338

Chapter 13. Higher-order Networks 344
13.1 Simplicial Complexes 344
13.2 Combinatorial Laplacians 347
13.3 Triangulations and the Rips Complex 350
13.4 The Nerve Complex 354

Appendix A. 362
A.1 Analysis 362
A.2 Matrix Theory 363
A.3 Control Theory 366
A.4 Probability 372
A.5 Optimization and Games 375

Bibliography 379

Index 399

This page intentionally left blank

Preface

“I don’t want to achieve immortality
through my work ... I want to achieve

it through not dying.” — Woody Allen

The emergence of (relatively) cheap sensing and actuation nodes, capable of
short-range communications and local decision-making, has raised a num-
ber of new system-level questions concerning how such systems should be
coordinated and controlled. Arguably, the biggest challenge facing this new
field of research is means by which local interaction rules lead to desired
global properties, that is, given that the networked system is to accomplish
a particular task, how should the interaction and control protocols be struc-
tured to ensure that the task is in fact achieved?

This newly defined area of networked systems theory has attracted wide
interest during the last decade. A number of sessions are devoted to this
problem at the major conferences and targeted conferences have emerged.
Moreover, graduate-level courses are beginning to be taught in this general
area, and major funding institutions are pursuing networked systems as in-
tegral to their missions due to the many applications where network-level
questions must be addressed. These applications include sensor networks,
multiagent robotics, and mobile ad hoc communication nets, in addition to
such areas as social networks and quantum networks.

The particular focus of this book is on graph theoretic methods for the
analysis and synthesis of networked dynamic systems. By abstracting away
the complex interaction geometries associated with the sensing and commu-
nication footprints of the individual agents, and instead identifying agents
with nodes in a graph and encoding the existence of an interaction between
nodes as an edge, a powerful new formalism and set of tools for networked
systems have become available. For instance, the graph theoretic framework
described in this book provides means to examine how the structure of the
underlying interaction topology among the agents leads to distinct global
behavior of the system. This graph theoretic outlook also allows for exam-
ining the correspondence between system theoretic features of networked
systems on one hand, and the combinatorial and algebraic attributes of the

xii PREFACE

underlying network on the other. By doing this, one can, for example, ad-
dress questions related to the robustness of networked systems in terms of
the variation of the network topology, as well as the network synthesis prob-
lem in the context of embedded networked systems.

This book builds on the foundation of graph theory and gradually paves
the way toward examining graph theoretic constructs in the context of net-
worked systems. This target is laid out in the first part of the book, which
focuses on the interplay between the agreement protocol (also known as
the consensus algorithm) and graph theory. Specifically, in Chapter 3, the
correspondence between the network structure and the convergence prop-
erties of the agreement protocol is shown for both undirected and directed
networks using the spectral properties of the graph. This is followed by es-
tablishing an explicit correspondence between the agreement protocol and
the general area of Markov chains. The latter chapters in Part I delve into the
extension of the basic setup in Chapter 3 to consider the effect of random-
ness, noise, and nonlinearities on the behavior of the consensus coordination
protocols. This is accomplished by introducing the powerful machinery of
Lyapunov theory in deterministic (Chapter 4) and stochastic (Chapter 5) set-
tings, which provides the flexibility for analyzing various extensions of the
basic agreement protocol.

In Part II, we provide various dynamical, system theoretic, and applied
facets of dynamic systems operating over networks. These include forma-
tion control (Chapter 6), mobile robot networks (Chapter 7), distributed es-
timation (Chapter 8), and social networks, epidemics, and games (Chapter
9).

Part III provides an introduction to a perspective of viewing networks as
dynamic systems. In Chapter 10, we discuss the controllability and observ-
ability of agreement protocols equipped with input and output nodes. In
particular, this chapter is devoted to the study of how control theoretic prop-
erties of the system are dictated by the algebraic and combinatorial structure
of the network. This is followed by the problem of synthesizing networks
(Chapter 11), with particular attention to the dynamic, graph theoretic, and
game theoretic aspects that such an endeavor entails. Another novel ramifi-
cation of the graph theoretic outlook on multiagent systems is in the context
of graph processes, where the network topology itself is given a dynamic
role that lends itself to analysis via system theoretic methods (Chapter 12).
Higher-order interconnections conclude the book (Chapter 13), demonstrat-
ing how the graph theoretic machinery can be extended to simplicial com-
plexes, for example, in order to address sensor-coverage problems.

Pictorially, one can view the chapters in this book as nodes in a directed
graph, shown below, whose edges suggest dependencies between the vari-
ous chapters.

PREFACE xiii

2

3

4

5 6

7

8 9 10 11

12

13

One can also think of these edges as suggesting possible routes through
the book. For example, the 2 → 3 → 4 → 6 → 7 branch constitutes a
natural graduate level course on multiagent robotics, while the branch 2 →
3 → 4 → 11 → 12 → 13 provides a more mathematical treatment of the
underlying theme of the book. Ideas for teaching from the book, additional
examples and exercises, as well as other comments will be posted on the
book website at https://sites.google.com/site/mesbahiegerstedt.

The book is suitable for graduate students and researchers in systems,
controls, and robotics across various engineering departments, as well as
those in applied mathematics and statistics whose work is network-centric.
Part of this book is also suitable for senior undergraduate students in en-
gineering and computer science programs. As such, we hope that it fills
a niche by providing a timely exposition of networked dynamic systems
with emphasis on their graph theoretic underpinnings. We enjoyed count-
less hours discussing and thinking about the topics that have found their way
into the book; along the way, we have been humbled by gaining a better
glimpse of the research creativity that has been expressed through schol-
arly works by many researchers in the general area of networks and system
theory. Since our goal was expanded at some point to cover a rather broad
set of topics related to graph theoretic methods for analysis and synthesis
of dynamical systems operating over networks, we had to make a few com-
promises on the style. As such, we decided to offer proofs for most of the
presented results, yet only state the results that we felt played a supportive
role in each chapter. In most cases, results that are stated without a proof are
discussed in the exercises and can be found in the references discussed at the
end of each chapter. Our hope is that researchers and students who are new
to this field will find in this book a welcoming and readable account of an

xiv PREFACE

active area of research- and for the experts–to stumble across new insights
that further complements their research horizons.

Throughout the development of this book, we have been fortunate to be
supported by a number of funding agencies, including NSF, ONR, ARO,
AFOSR, Boeing, NASA/JPL, and Rockwell Collins. Their support is grate-
fully acknowledged.

On a final note, this book would not have been possible without help,
support, and suggestions from a number of colleagues. In particular, Randy
Beard, Richard Murray, and Panagiotis Tsiotras provided feedback on the
book that certainly helped make it stronger. Parts of this book are based on
results obtained by our current and former students and post-docs, some of
whom graciously helped us proofread parts of the book. Special thanks go to
Dan Zelazo, Amir Rahmani, Airlie Chapman, Marzieh Nabi-Abdolyousefi,
Meng Ji, Musad Haque, Brian Smith, Patrick Martin, Philip Twu, Arindam
Das, Yoonsoo Kim, Peter Kingston, Simone Martini, Mauro Franceschelli,
and Abubakr Muhammad. We would like to thank Vickie Kearn at Princeton
University Press for shepherding this book, from its initial conception to
the final product. And finally, we are forever grateful to our parents for
cultivating in us a sense of appreciation for what is beautiful yet–at times–
enigmatic.

M.M. (Seattle), M.E. (Atlanta)
April 2010

xv

Notation

Graph Theory

G: undirected graph; also referred to as graph

D: directed graph; also referred to as digraph

D̃: graph obtained after removing the orientation of the directed edges
of D; also referred to as disoriented digraph

G: complement of undirected graph G

Go: oriented version of graph G

V : vertex set; when necessary, also denoted by V (G) or V (D)

∂S: boundary of vertex set S (with respect to an underlying graph)

cl S: closure of vertex set S (with respect to an underlying graph)

vi, i = 1, . . . , n: vertex i; also used for denoting the ith entry of
vector v

E: edge set; when necessary, also denoted by E(G) or E(D)

eij = {vi, vj}: edge in a graph; also denoted by vivj or ij

i ∼ j: edge {vi, vj} is present in the graph

dist(i, j): the length of the shortest path between vertices vi and vj

eij = (vi, vj): edge in a digraph

G\e: graph G with edge e removed

G + e: graph G with edge e added

N(i): set of agents adjacent to i

N(i, t): set of agents adjacent to i at time t

xvi

d(v): degree of vertex v

din(v): in-degree of vertex v

dmin(G): minimum vertex degree in G

dmax(G): maximum vertex degree in G

d̄in(D): maximum (weighted) in-degree in D

diam(G): diameter of G

A(G): adjacency matrix of G

A(D): in-degree adjacency matrix of D

∆(G): degree matrix of G

∆(D): in-degree matrix of D

L(G): graph Laplacian of G

Le(G): edge Laplacian of G

L(D): in-degree Laplacian of D

Lo(D): out-degree Laplacian of D

L(G): line graph of G

D(D): incidence matrix of D

Cn: cycle graph on n vertices

Pn: path graph on n vertices

Kn: complete graph on n vertices

Sn: star graph on n vertices

G(n, p): set of random graphs on n vertices, with edge probability p

G(n, r): set of random geometric graphs on n vertices, with edge
threshold distance r

G1�G2: Cartesian product of two graphs G1 and G2

xvii

Linear Algebra

Rn: Euclidean space of dimension n

Rn
+: nonnegative orthant in Rn

Rm×n: space of m × n real matrices

Sn: space of n × n symmetric matrices over reals

Sn
+: space of n × n (symmetric) positive semidefinite matrices

In: n × n identity matrix; also denoted as I if the dimension is clear
from the context

0m×n: m × n zero matrix; also denoted as 0 if the dimension is clear
from the context

M−1,M †: respectively, inverse and pseudo-inverse of M

MT ,M−T : respectively, transpose and inverse transpose of M

N (M): null space of M

R(M): range space of M

[A]ij : entry of matrix A on ith row and jth column

det(M): determinant of (square) matrix M

rankM : rank of M

traceM : trace of M

eM : matrix exponential of square matrix M

M1 ⊗ M2: Kronecker product of two matrices M1 and M2

L[i,j]: matrix obtained from L by removing its ith row and jth column

diag(M): vector comprised of the diagonal elements of M

Diag(v): diagonal matrix with the vector v on its diagonal

Diag(vk), k = 1, 2, · · · , n: Diag([v1, · · · , vn]T)

M > 0 (M a symmetric matrix): M is positive definite

M ≥ 0 (M a symmetric matrix): M is positive semidefinite

xviii

λi(M): ith eigenvalue of M ; M is symmetric and its eigenvalues are
ordered from least to greatest value

vi: ith entry of the vector v; also used for denoting vertex i in a graph

ρ(M): spectral radius of M , that is, the maximum eigenvalue of M
in magnitude

span{x}: span of vector x, that is, the subspace generated by scalar
multiples of x

〈x, y〉: inner product between two vectors x and y; real part of the
inner product x∗y if x and y are complex-valued

1: vector of all ones

1n: n × 1 vector of all ones

1⊥: subspace orthogonal to span{1}

‖x‖: 2-norm of vector x; ‖x‖ = (xT x)1/2 unless indicated otherwise

Other

dist: distance function

j:
√
−1

|z|: modulus of complex number z = α+jβ, that is, 2-norm of vector
[α, β]T

V \W : elements in set V that are not in set W∏
i αi: product of αis∑
i αi: sum of αis

≈: approximately equal to

�: much less than

x∗: complex conjugate transpose for complex-valued vector x

xi(t) ∈ Rp: state of agent i at time t

A: agreement set, equal to span{1}

E{x}: expected value of random variable x

xix

var{x}: variance of random variable x

x̂: estimate of random variable (vector) x

[n] (n a positive integer): set {1, 2, . . . , n}

mod p: a = b (mod p) if a − b is an integer multiple of p

2V (V a finite set): the power set of V , that is, the set of its subsets(n
m

)
: number of ways to choose m-element subsets of [n], that is,

n!/(m!(n − m)!)

card(A): cardinality of set A

arg min f : argument of the function f that minimizes it over its do-
main or constraint set

arg max f : argument of the function f that maximizes it over its do-
main or constraint set

R[x1, . . . , xn]: set of polynomials over the reals with indeterminants
x1, . . . , xn

O(f(n)): g(n) = O(f(n)) if g(n) is bounded from above by some
constant multiple of f(n) for large enough n

Ω(f(n)): g(n) = Ω(f(n)) if g(n) is bounded from below by some
constant multiple of f(n) for large enough n

This page intentionally left blank

PART 1

FOUNDATIONS

This page intentionally left blank

Chapter One

Introduction

“If a man writes a book,
let him set down only what he knows.

I have guesses enough of my own.” — Goethe

In this introductory chapter, we provide a brief discussion of networked
multiagent systems and their importance in a number of scientific and
engineering disciplines. We particularly focus on some of the theoreti-
cal challenges for designing, analyzing, and controlling multiagent robotic
systems by focusing on the constraints induced by the geometric and com-
binatorial characters of the information-exchange mechanism.

1.1 HELLO, NETWORKED WORLD

Network science has emerged as a powerful conceptual paradigm in science
and engineering. Constructs and phenomena such as interconnected net-
works, random and small-world networks, and phase transition nowadays
appear in a wide variety of research literature, ranging across social net-
works, statistical physics, sensor networks, economics, and of course multi-
agent coordination and control. The reason for this unprecedented attention
to network science is twofold. On the one hand, in a number of disciplines–
particularly in biological and material sciences–it has become vital to gain
a deeper understanding of the role that inter-elemental interactions play in
the collective functionality of multilayered systems. On the other hand,
technological advances have facilitated an ability to synthesize networked
engineering systems–such as those found in multivehicle systems, sensor
networks, and nanostructures–that resemble, sometimes remotely, their nat-
ural counterparts in terms of their functional and operational complexity.

A basic premise in network science is that the structure and attributes of
the network influence the dynamical properties exhibited at the system level.
The implications and utility of adopting such a perspective for engineering
networked systems, and specifically the system theoretic consequences of
such a point of view, formed the impetus for much of this book.1

1One needs to add, however, that judging by the vast apparatus of social networking, e.g.,

4 CHAPTER 1

1.2 MULTIAGENT SYSTEMS

Engineered, distributed multiagent networks, such as distributed robots and
mobile sensor networks, have posed a number of challenges in terms of
their system theoretic analysis and synthesis. Agents in such networks are
required to operate in concert with each other in order to achieve system-
level objectives, while having access to limited computational resources and
local communications and sensing capabilities. In this introductory chapter,
we first discuss a few examples of such distributed and networked systems,
such as multiple aerospace vehicles, sensor networks, and nanosystems. We
then proceed to outline some of the insights that a graph theoretic approach
to multiagent networks is expected to provide, before offering a preview of
the book’s content.

1.2.1 Boids Model

The Reynolds boids model, originally proposed in the context of computer
graphics and animation, illustrates the basic premise behind a number of
multiagent problems, in which a collection of mobile agents are to collec-
tively solve a global task using local interaction rules. This model attempts
to capture the way social animals and birds align themselves in swarms,
schools, flocks, and herds. In the boids flocking model, each “agent,” in this
case a computer animated construct, is designed to react to its neighboring
flockmates, following an ad hoc protocol consisting of three rules operat-
ing at different spatial scales. These rules are separation (avoid colliding
with neighbors), alignment (align velocity with neighbors’ velocities), and
cohesion (avoid becoming isolated from neighbors). A special case of the
boids model is one in which all agents move at the same constant speed and
update their headings according to a nearest neighbor rule for group level
alignment and cohesion. It turns out that based on such local interaction
rules alone, velocity alignment and other types of flocking behaviors can be
obtained. An example of the resulting behavior is shown in Figure 1.1.

1.2.2 Formation Flight

Distributed aerospace systems, such as multiple spacecraft, fleets of au-
tonomous rovers, and formations of unmanned aerial vehicles, have been
identified as a new paradigm for a wide array of applications. It is envi-
sioned that distributed aerospace technologies will enable the implementa-
tion of a spatially distributed network of vehicles that collaborate toward

email, facebook, twitter, and a multitude of networked, coordinated, and harmonic behavior
in nature and the arts our fascination with multiagent networks is more intrinsic.

INTRODUCTION 5

Figure 1.1: A Reynolds boids model in action. Ten agents, each with an
arbitrary initial heading (given by the orientation of the triangles) and spac-
ing, are considered (left); after a while they are aligned, moving in the same
general direction at regular interagent distances (right). When this is the
case, we say that flocking has been achieved.

a single collective scientific, military, or civilian goal. These systems are
of great interest since their distributed architecture promises a significant
cost reduction in their design, manufacturing, and operation. Moreover, dis-
tributed aerospace systems lead to higher degrees of scalability and adapt-
ability in response to changes in the mission goals and system capabilities.

An example of a multiple platform aerospace system is space-borne opti-
cal interferometry. Space interferometers are distinguished by their compo-
sition and operational environment. They are composed of separated optical
instruments, leading to a so-called sparse aperture. Although optical inter-
ferometers can, in principle, function on the earth’s surface, there are many
advantages in operating them in space. Space-borne interferometers have
greater optical sensitivity and resolution, wider field of view, and greater
detection capability. The resolution of these interferometers, as compared
with space telescopes (e.g., Hubble), is dictated by the separation between
the light collecting elements (called the baseline) rather than their size. Con-
sequently, as the achievable imaging resolution of a space telescope is dic-
tated by advanced manufacturing techniques, the size of the launch vehicle,
and the complex deployment mechanism, the capability of a space-borne op-
tical interferometer is limited by how accurately the operation of separated
optical elements can be coordinated. These space-borne optical interferom-
eters can be mounted on a single large space structure, composed of rigid
or semirigid trusses or even inflatable membranes. In this case, the struc-
tural dynamics of the spacecraft plays a major role in the operation and the

6 CHAPTER 1

Figure 1.2: Terrestrial Planet Finder, courtesy of JPL/NASA

success of the mission. An alternate approach is to fly the interferometer on
multiple physically separated spacecraft, that is, a distributed space system.
An example of such a mission is the Terrestrial Planet Finder (TPF) shown
in Figure 1.2.

Another important set of applications of networked aerospace systems is
found in the area of unmanned aerial vehicles of various scales and capa-
bilities. These vehicle systems provide unique capabilities for a number
of mission objectives, including surveillance, synthetic aperture imaging,
mapping, target detection, and environmental monitoring.

1.2.3 Sensor Networks

A wireless sensor network consists of spatially distributed autonomous de-
vices that cooperatively monitor physical or environmental conditions, such
as temperature, sound, vibration, or pressure. Each node in a sensor net-
work is equipped with a wireless communication device as well as an en-
ergy source–such as a battery–that needs to be efficiently utilized. The size,
cost, and fidelity of a single sensor node can vary greatly, often in direct
correspondence with its energy use, computational speed, and the ease by
which it can be integrated within the network. Each sensor exchanges infor-
mation on its local measurements with other nodes in the network in order

INTRODUCTION 7

to reach an accurate estimate of the physical or environmental variable of
interest. We note that the efficiency requirement on the utilization of the
energy source for each sensor often dictates a geometry on the internode
communication for the sensor network.

1.2.4 Nanosystems

Recently, there has been a surge of interest by material scientists in organic
compounds that are interconvertible via chemical reactions; this process is
often referred to as tautomerization. These chemical reactions can be used
for constructing molecular switches, where a molecule is steered between
two or more stable states in a controlled fashion. Other electronic compo-
nents such as diodes and transistors can be made that rely on similar induced
transitions between structural isomers. Such molecular devices can then be
put together, leading to the possibility of designing molecular circuits, net-
works, and more generally, molecular dynamic systems. An example of a
molecular switch is a hydrogen tautomerization employed to manipulate and
probe a naphthalocyanine molecule via low-temperature scanning tunneling
microscopy. The properties and functionality of the corresponding molec-
ular machines and networks are highly dependent on the inter-molecular
bonds that can generally be manipulated by techniques such as electron
beam lithography and molecular beam epitaxy.

1.2.5 Social Networks

Social networks are comprised of social entities, such as individuals and
organizations, with a given set of interdependencies. The interaction be-
tween these entities can assume a multitude of relations, such as financial,
social, and informational. Such networks are of great interest in a variety
of fields, including theoretical sociology, organizational studies, and socio-
linguistics. In fact, the structure of social networks has always been of
fundamental importance for understanding these networks. More recently,
the notion of manipulating the network structure has been contemplated as
a viable means of altering the network behavior. For example, the concept
of a change agent refers to a network entity that intentionally or indirectly
causes or accelerates social, cultural, or behavioral change in the network.

1.2.6 Energy Networks

Complex, large-scale energy systems, delivering electrical and mechanical
energy from generators to loads via an intricate distribution network, are
among the most useful engineered networked dynamic systems. These sys-
tems often consist of a heterogeneous set of dynamic systems, such as power

8 CHAPTER 1

electronics and switching logics, that evolve over multiple timescales. Dy-
namics, stability, and control of individual power system elements (e.g.,
synchronous machines) or their interconnections (e.g., multi-machine mod-
els) have extensively been examined in the literature. However, as the need
for more efficient generation and utilization of energy has become prevalent,
distributed and network architectures such as the “smart grid” have gained
particular prominence.

1.2.7 The Common Thread

The examples above, sampled from distinct disciplines, share a set of funda-
mental system theoretic attributes with a host of other networked multiagent
systems. In a nutshell, such systems consist of (1) dynamic units, potentially
with a decision making capability and means by which they can receive and
transmit information among themselves, and (2) a signal exchange network,
which can be realized via wired or wireless protocols in engineering, bio-
chemical reactions in biological systems, and psychological and sociologi-
cal interactions in the context of social networks.

The fundamental feature of networked systems, distinguishing them from
systems that have traditionally been considered in system theory, is the pres-
ence of the network and its influence on the behavior of the overall system.
Consequently, a successful “system theory for networked systems” has to
blend the mathematics of information networks with paradigms that are
at the core of dynamic system theory (stability, controllability, optimality,
etc.). One of the challenging aspects facing such an interdisciplinary mar-
riage in the context of system theory is that many network properties, for
example, the network geometry, have a logical or combinatorial character.

1.3 INFORMATION EXCHANGE VIA LOCAL INTERACTIONS

In order to have a concrete model of “local interactions,” in this section, we
delineate the local nature of information exchange mechanisms for robotic
networks.

1.3.1 Locality in Communication

One way in which agents can share information with their surroundings
is through communication channels. But transmitting and receiving infor-
mation requires energy, which is typically a sparse commodity in many
networked applications, such as sensor networks and mobile ad hoc com-
munication networks. Hence, only agents within a limited communication
range can exchange information directly, forcing information to propagate

INTRODUCTION 11

1.4.1 Static, Dynamic, and Random Networks

If the edges in graphs are to be interpreted as enabling information to flow
between the vertices on the corresponding edge, these flows can be directed
as well as undirected. In other words, it is possible that the information will
flow only in one direction. This would, for example, be the case if the ver-
tices correspond to sensor agents, and agent i can sense agent j, while agent
j can not sense agent i, for instance, due to different sensing modalities.
In that case, the edge would be directed, with vj as its “tail” and vi as its
“head.” We will pictorially depict this as an arrow originating from vj and
ending at vi. If the edge is undirected, we will simply drop the arrow and
draw the edge as a line between the vertices.

However, directionality is not the only aspect of the edges that we will
consider. We will also investigate different forms of temporal persistence,
that is, situations in which the edges may disappear and reappear. In partic-
ular, we will group graphs into three classes:

• Static Networks: In these networks, the edges are static, that is, the
edge set will not be time varying. This is, for example, the situation
when a static communication network has been established, through
which the information is flowing.

• Dynamic, State-dependent Networks: Here the edge set is time
varying in that edges may disappear and reappear as functions of the
underlying state of the network agents. For example, if the vertices in
the graph correspond to mobile robots equipped with range sensors,
edges will appear as agents get within the sensory range of each other,
and be lost as agents get out of the sensory range.

• Random Networks: These networks constitute a special class of dy-
namic networks in that the existence of a particular edge is given by
a probability distribution rather than some deterministic, geometric
sensing condition. Such networks arise, for example, in the commu-
nications setting when the quality of the communication channels can
be modeled as being probabilistic in nature.

It should be noted already at this point that these three types of networks
will require different tools for their analysis. For static networks, we will
rely heavily on the theory of linear, time-invariant systems. When the net-
works are dynamic, we have to move into the domain of hybrid systems,
which will inevitably lead down the path of employing Lyapunov-based ma-
chinery for switched and hybrid systems. The random networks will in turn
rely on a mix of Lyapunov theory and notions from stochastic stability.

12 CHAPTER 1

1.5 LOOKING AHEAD

Graphs are inherently combinatorial objects, with the beauty but also limita-
tions that come with such objects. Even though we will repeatedly connect
with combinatorics, a host of issues pertaining to multiagent networks do
not fruitfully lend themselves to a (pure) graph theoretic paradigm–at least
not yet! Examples of such application domains include coverage control
in sensor networks, which involves explicit partitioning of the environment
and feedback control over a lossy and delayed network, where issues of de-
lays, packet loss, and asynchronous operation, even for a pair of agents, are
dominant. Moreover, the perspective adopted in this book does not include
a detailed analysis of the underlying communication protocols, but instead
employs a rather idealized model of information sharing, such as broadcast
or single- and multi-hop strategies, and it is assumed that we can transmit
and receive real numbers rather than quantized, finite bandwidth packets.

Another broad approach that we have adopted in this book is to work for
the most part with simplified dynamics for the agents, that is, those with
single and double integrators, linear time-invariant models, and unicycle
models. In contrast, real-world networked systems are often comprised of
agents with nontrivial dynamic input-output characteristics, interacting with
each other via an elaborate set of interaction protocols. In this case, the be-
havior of the overall system depends not only on the interconnection topol-
ogy and its detailed attributes, but also on how the interconnection protocol
combines with the nonlinear and hybrid nature of the agents’ dynamics.

Examples of topics that will be examined in this book include local inter-
action protocols for

• Consensus: having agents come to a global agreement on a state
value;

• Formations: making the agents move to a desired geometric shape;
• Assignments: deciding a fair assignment of tasks among multiple

agents;
• Coverage: producing maximally spread networks without making

them disconnected or exhibit “holes” in their coverage;
• Flocking/Swarming: making the agents exhibit behaviors observed

in nature, such as flocking birds, schooling fish, or swarming social
insects;

• Social Networks and Games: analyzing how the outcomes of games
and social interactions are influenced by the underlying interaction
topology; and

• Distributed Estimation: organizing a group of sensors to collec-
tively estimate a random phenomena of interest.

INTRODUCTION 13

In later parts, we will also look at system theoretic models of controlled
networks, capturing to what extend the behavior of networks can be influ-
enced by exogenous inputs. We will examine dynamic notions of graph
processes, thus allowing the graph structure itself be subject to control and
time evolution. We conclude the book by providing an account of a frame-
work for analyzing higher-dimensional interaction models via simplicial
complexes.

NOTES AND REFERENCES

The boids model is due to Reynolds, who was motivated by animating
movements of animal flocking [205]; this model was later employed by
Vicsek, Czirók, Ben-Jacob, Cohen, and Shochet [238] for constant speed
particles, mainly as a way to reason about self-organizing behaviors among
large numbers of self-driven agents. This so-called Vicsek model, in turn,
has provided an impetus for system theoretic analysis, such as the work of
Jadbabaie, Lin, and Morse [124], which is also related to works on paral-
lel and distributed computation [22] that in turn were inspired by works in
distributed decision making examined by statisticians and economists [13],
[198],[213].

Space-borne optical interferometry is an active area of research for a num-
ber of future scientific missions by NASA, such as the Terrestrial Planet
Finder [3] and by the European Space Agency, such as the Darwin Mis-
sion [1]. Interferometry is one of the cornerstones of applied optics [32]; for
the spaceborne application of interferometry, see [224]. Molecular switch
and tautometers are of great interest in nanotechnology, examples of which
can be found in [146],[172],[206]. Social networks is an active area of re-
search in sociology, statistics, and economics; see for example, Wasserman
and Faust [241]; for a more network-centric treatment, see the books by
Goyal [105] and Jackson [122].

For complementary references related to this book, with somewhat dif-
ferent emphasis and outlook, see the books by Ren and Beard [204], and
Bullo, Cortés, and Martı́nez [41].

Chapter Two

Graph Theory

“The origins of graph theory are humble,
even frivolous.”

— N. Biggs, E. K. Lloyd, and R. J. Wilson

As seen in the introductory chapter, graphs provide natural abstractions for
how information is shared between agents in a network. In this chapter, we
introduce elements of graph theory and provide the basic tools for reason-
ing about such abstractions. In particular, we will give an introduction to
the basic definitions and operations on graphs. We will also introduce the
algebraic theory of graphs, with particular emphasis on the matrix objects
associated with graphs, such as the adjacency and Laplacian matrices.

Graph-based abstractions of networked systems contain virtually no infor-
mation about what exactly is shared by the agents, through what protocol
the exchange takes place, or what is subsequently done with the received
information. Instead, the graph-based abstraction contains high-level de-
scriptions of the network topology in terms of objects referred to as vertices
and edges. In this chapter, we provide a brief overview of graph theory. Of
particular focus will be the area of algebraic graph theory, which will pro-
vide the tools needed in later chapters for tying together inherently dynamic
objects (such as multi-agent robotic systems) with combinatorial character-
ization of networks (graphs).

2.1 GRAPHS

A finite, undirected, simple graph–or a graph for short–is built upon a finite
set, that is, a set that has a finite number of elements. We refer to this set as
the vertex set and denote it by V ; each element of V is then a vertex of the
graph. When the vertex set V has n elements, it is represented as

V = {v1, v2, . . . , vn}.

GRAPH THEORY 15

Now consider the set of 2-element subsets of V , denoted by [V]2. This set
consists of elements of the form {vi, vj} such that i, j = 1, 2, . . . , n and
i �= j. The finite graph G is formally defined as the pair G = (V,E), where
V is a finite set of vertices and E is a particular subset of [V]2; we refer to E
as the set of edges of G. We occasionally refer to vertices and edges of G as
V (G) and E(G), respectively, and simplify our notation for an edge {vi, vj}
by sometimes denoting it as vivj or even ij.

A graph is inherently a set theoretic object; however, it can conveniently
be represented graphically, which justifies its name. The graphical represen-
tation of G consists of “dots” (the vertices vi), and “lines” between vi and
vj when vivj ∈ E. This graphical representation leads to many definitions,
insights, and observations about graphs. For example, when an edge exists
between vertices vi and vj , we call them adjacent, and denote this relation-
ship by vi ∼ vj . In this case, edge vivj is called incident with vertices vi
and vj . Figure 2.1 gives an example of an undirected graph, G = (V,E),
where V = {v1, v2, . . . , v5} and E = {v1v2, v2v3, v3v4, v3v5, v2v5, v4v5}.

v1 v2

v3

v4

v5

Figure 2.1: An undirected graph on 5 vertices

Analogously, the neighborhood N(i) ⊆ V of the vertex vi will be un-
derstood as the set {vj ∈ V | vivj ∈ E}, that is, the set of all vertices that
are adjacent to vi. If vj ∈ N(i), it follows that vi ∈ N(j), since the edge
set in a (undirected) graph consists of unordered vertex pairs. The notion
of adjacency in the graph can be used to “move” around along the edges of
the graph. Thus, a path of length m in G is given by a sequence of distinct
vertices

vi0 , vi1 , . . . , vim , (2.1)

such that for k = 0, 1, . . . ,m− 1, the vertices vik and vik+1
are adjacent. In

this case, vi0 and vim are called the end vertices of the path; the vertices
vi1 , . . . , vim−1 are the inner vertices. When the vertices of the path are
distinct except for its end vertices, the path is called a cycle. A graph without
cycles is called a forest.

We call the graph G connected if, for every pair of vertices in V (G), there
is a path that has them as its end vertices. If this is not the case, the graph is

16 CHAPTER 2

called disconnected. For example, the graph in Figure 2.1 is connected. We
refer to a connected graph as having one connected component–a compo-
nent in short. A component is thus a subset of the graph, associated with a
minimal partitioning of the vertex set, such that each partition is connected.
Hence, a disconnected graph has more than one component. A forest with
one component is–naturally–called a tree.

The graphical representation of graphs allows us to consider graphs as
logical constructions without the explicit identification of a vertex with an
element of a vertex set V . This is achieved by deleting the “labels” on the
dots representing the vertices of the graph; in this case, the graph is called
unlabeled. An unlabeled graph thus encodes the qualitative features of the
incident relation between a finite set of an otherwise unidentified objects.
When the vertices in an unlabeled graph are given back their identities, the
graph is called labeled. Figure 2.5 depicts two unlabeled graphs while the
graph shown in Figure 2.1 is labeled.

Example 2.1. Graphs can represent relations among social entities. For
example, in a party of six consisting of Anna, Becky, Carolyn, David, Eaton,
and Frank, the graph shown in Figure 2.2 depicts a scenario where all males
in the group are each others’ friends, all females in the group are each
others’ friends, and Anna and David are the only cross-gender friends in
the group.

A

B

C
D

E

F

Figure 2.2: Boys and girls

Example 2.2. Geographical locations, interconnected via roads, bridges,
bike routes, and so on, can naturally be represented by graphs. For example,
the graph shown in Figure 2.3 abstracts how the different land-masses of
the city of Königsberg in eighteenth-century East Prussia were connected
by bridges over rivers that passed through the city.

Example 2.3. Graphs can effectively express combinatorial relations be-
tween finite sets. Let [n] = {1, . . . , n} and for n > k > m, consider
the k-element subsets of [n] as vertices of a graph. Then let two vertices

GRAPH THEORY 17

Figure 2.3: The graph abstracting the bridges of Königsberg

be adjacent when the corresponding sets intersect at m elements. The re-
sulting graphs, for various values of n, k, and m, are called the Johnson
graphs J(n, k,m). The Johnson graph J(5, 2, 0), also known as the Peter-
son graph, is shown in Figure 2.4.

Figure 2.4: The Peterson graph J(5, 2, 0)

For unlabeled graphs, such as those depicted in Figures 2.3 - 2.4, it be-
comes imperative to define a notion for equating one graph with another.

Definition 2.4. Two graphs G = (V,E) and G′ = (V ′, E′) are said to
be isomorphic if they have similar vertex and edge sets in the sense that
there exists a bijection β : V → V ′ such that vivj ∈ E if and only if
β(vi)β(vj) ∈ E′. If this is the case, G and G′ are isomorphic, denoted as
G � G′.

2.1.1 Some Standard Classes of Graphs

Our first standard graph is the complete graph over n vertices, Kn. This is
the graph in which every vertex is adjacent to every other vertex. An exam-
ple is shown in Figure 2.5(a), where the complete graph over 4 vertices, K4,
is depicted.

18 CHAPTER 2

(a) K4 (b) P4

Figure 2.5: The complete graph and the path graph over 4 vertices

Other useful graphs include the path graph, the cycle graph, and the
star graph. A path graph is understood to be any graph isomorphic to the
graph Pn = ({v1, . . . , vn}, EP), where vivj ∈ EP if and only if j =
i + 1, i = 1, . . . , n − 1, as shown in Figure 2.5(b). Similarly, the n-
cycle Cn = ({v1, . . . , vn}, EC) is the graph with vivj ∈ EC if and only if
i − j = ±1 mod n. The star graph is given by Sn = ({v1, . . . , vn}, Estar),
with vivj ∈ Estar if and only if i = 1 or j = 1. These two graphs are
depicted in Figure 2.6.

Two other important classes of graphs include regular and bipartite graphs.
Each vertex of a k-regular graph has degree k; hence, a cycle graph is 2-
regular and the complete graph on n vertices is (n − 1)-regular. For a bi-
partite graph G, the vertex set is the union of two disjoint sets V1 and V2

such that uv ∈ E(G) implies that either u ∈ V1 and v ∈ V2, or u ∈ V2 and
v ∈ V1. If the cardinalities of the sets V1 and V2 are m and n, respectively,
then the bipartite graph on the vertex set V (G) = V1 ∪ V2 with mn edges is
called the complete bipartite graph Km,n.

(a) C4 (b) S5

Figure 2.6: The cycle graph over 4 vertices and the star graph over 5 vertices

GRAPH THEORY 19

2.1.2 Subgraphs and Induced Subgraphs

Although graphs are most commonly defined as combinatorial objects, it is
useful to perform set theoretic operations on graphs, such as examining their
subsets and taking unions or intersections among them.

Consider a graph G = (V,E) and a subset of vertices S ⊆ V . One can let
the subset of vertices “induce a subgraph” with respect to a given host graph.
This induced subgraph is given by GS = (S,ES), where ES = {{vi, vj} ∈
E | vi, vj ∈ S}. In other words, the subgraph S consists of the vertices
in the subset S of V (G) and edges in G that are incident to vertices in S.
An example is shown in Figure 2.7, where the host graph is given in Figure
2.7(a), while the subgraph induced by the set of black vertices is given in
Figure 2.7(b).

It should be noted, however, that it is not necessary to let the subgraphs
be “induced.” In fact, any graph G′ = (V ′, E′) is a subgraph of G = (V,E)
if V ⊆ V ′ and E ⊆ E′. In this case, we occasionally refer to G as being the
“supgraph” of G′. If V = V ′ for a subgraph, it is referred to as a spanning
subgraph. A spanning tree for a graph G is thus a subgraph of G that is also
a tree.

(a) G (b) GS

(c) ∂GS (d) clGS

Figure 2.7: A graph (a) and an induced subgraph (b) together with its bound-
ary (c) and closure (d). The nodes in the subgraph S are shown in black
while those in V \S are white.

20 CHAPTER 2

2.1.3 Operations on Subgraphs

Now that we can induce subgraphs from vertex sets of graphs, we can per-
form a number of set theoretic operations on subgraphs as well. For ex-
ample, given S, S′ ⊆ V (G), let GS and GS′ be the corresponding induced
subgraphs of G. The union and intersections of these subgraphs can then be
defined as the subgraphs induced by S∪S′ and S∩S′, respectively. In other
words,

GS ∪ GS′ = GS∪S′ = (S ∪ S′, {vivj ∈ E | vi, vj ∈ S ∪ S′}),
GS ∩ GS′ = GS∩S′ = (S ∩ S′, {vivj ∈ E | vi, vj ∈ S ∩ S′}). (2.2)

Similarly, boundaries and closures of subgraphs can be defined as

∂GS = G∂S = (∂S, {vivj ∈ E | vi, vj ∈ ∂S}), (2.3)

where ∂S = {vi ∈ V | vi �∈ S and ∃vj ∈ S s.t. vivj ∈ E}. As an example,
the boundary of the subgraph induced by the black vertices in Figure 2.7(a)
is given in Figure 2.7(c). Following this, the closure of a subgraph GS is
defined as the union of the subgraph with its boundary, that is,

clGS = GS ∪ ∂GS . (2.4)

2.2 VARIATIONS ON THE THEME

The notion of graphs can be generalized in various ways; in this section, we
introduce two natural ones.

2.2.1 Weighted Graphs

If, together with the edge and vertex sets, a function w : E → R is given
that associates a value to each edge, the resulting graph G = (V,E,w)
is a weighted graph. On such graphs, one can consider shortest paths, or
geodesics, between vertices, through the notion of path length, defined as
the sum of all the weights along the path. Specifically, by letting π(vi, vj) be
the set of all paths connecting vi and vj , a (not necessarily unique) geodesic
between vi and vj is a minimizer to

min
p∈π(vi,vj)

length(p).

Similarly, the diameter of a weighted, connected graph is the length of any
of its longest geodesics.

GRAPH THEORY 21

2.2.2 Digraphs

When the edges in a graph are given directions, for example as shown in
Figure 2.8, the resulting interconnection is no longer considered an undi-
rected graph. A directed graph (or digraph), denoted by D = (V,E), can
in fact be obtained in two different ways. The first is simply to drop the
requirement that the edge set E contains unordered pairs of vertices. What
this means is that if the ordered pair (vi, vj) ∈ E, then vi is said to be the tail
(where the arrow starts) of the edge, while vj is its head. The other manner
in which a directed graph can be constructed is to associate an orientation
o to the unordered edge set E. Such an orientation assigns a direction to
edges in the sense that o : E → {−1, 1}, with o(vi, vj) = −o(vj , vi). An
edge (vi, vj) is said to originate in vi (tail) and terminate in vj (head) if
o(vi, vj) = 1, and vice versa if o(vi, vj) = −1.

Notions of adjacency, neighborhood, subgraphs, and connectedness can
be extended in the context of digraphs. For example, a directed path of
length m in D is given by a sequence of distinct vertices

vi0 , vi1 , . . . , vim , (2.5)

such that for k = 0, 1, . . . ,m − 1, the vertices (vik , vik+1
) ∈ E(D). A

digraph is called strongly connected if for every pair of vertices there is a
directed path between them. The digraph is called weakly connected if it is
connected when viewed as a graph, that is, a disoriented digraph. Analogous

v1

v2

v3

v4

e1

e2

e3

Figure 2.8: A directed graph over 4 vertices that is not strongly connected

to the case of graphs, a subgraph of a digraph D = (V,E), denoted by
D′ = (V ′, E′), is such that V ′ ⊆ V and E′ ⊆ E′.

Figure 2.8 provides an example of a digraph. In fact, this digraph is
D = (V,E), where V = {v1, v2, v3, v4} while the edge set E is the set
of ordered pairs {(v1, v3), (v1, v2), (v4, v3)}. In this figure, the edges have
been given labels as well, and if we assume that such a labeling has been

22 CHAPTER 2

provided (possibly in an arbitrary fashion), the edge set can be written as
E = {e1, e2, . . . , em}, where m is the total number of edges in the graph.
For example, E = {e1, e2, e3} in Figure 2.8.

2.3 GRAPHS AND MATRICES

As we have seen so far, graphs are constructs for representing relations be-
tween a finite number of objects, while admitting a straightforward graphi-
cal representation in terms of vertices and edges. Graphs also admit a rep-
resentations in terms of matrices. Some of these matrices will be examined
subsequently.

2.3.1 Adjacency and Degree

For an undirected graph G, the degree of a given vertex, d(vi), is the car-
dinality of the neighborhood set N(i), that is, it is equal to the number of
vertices that are adjacent to vertex vi in G. Hence, for the graph shown in
Figure 2.1, the degrees of the vertices are

d(v1) = 1, d(v2) = 3, d(v3) = 3, d(v4) = 2, d(v5) = 3.

The degree sequence of a graph is the set of degrees of its vertices, often
written in an increasing order. Based on the notions of degree and adjacency,
one can associate certain matrices with graphs. The degree matrix of G is
the diagonal matrix, containing the vertex-degrees of G on the diagonal, that
is,

∆(G) =

⎛⎜⎜⎜⎜⎜⎝
d(v1) 0 · · · 0

0 d(v2) · · · 0

...
...

0 0 · · · d(vn)

⎞⎟⎟⎟⎟⎟⎠ , (2.6)

with n being the number of vertices.
The adjacency matrix A(G) is the symmetric n × n matrix encoding of

the adjacency relationships in the graph G, in that

[A(G)]ij =
{

1 if vivj ∈ E,
0 otherwise. (2.7)

GRAPH THEORY 23

Returning to the example in Figure 2.1, the corresponding degree and
adjacency matrices are

∆(G) =

⎛⎜⎜⎜⎜⎝
1 0 0 0 0
0 3 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 3

⎞⎟⎟⎟⎟⎠ and A(G) =

⎛⎜⎜⎜⎜⎝
0 1 0 0 0
1 0 1 0 1
0 1 0 1 1
0 0 1 0 1
0 1 1 1 0

⎞⎟⎟⎟⎟⎠ .

2.3.2 Incidence Matrix

Under the assumption that labels have been associated with the edges in
a graph whose edges have been arbitrarily oriented, the n × m incidence
matrix D(Go) is defined as

D(Go) = [dij] , where dij =

⎧⎨⎩ −1 if vi is the tail of ej ,
1 if vi is the head of ej ,
0 otherwise.

(2.8)

The interpretation here is that D(Go) captures not only the adjacency rela-
tionships in the graph, but also the orientation that the graph now enjoys;
the incidence matrix associated with a graph G that has been oriented as Go

shown in Figure 2.8 is

D(Go) =

⎛⎜⎜⎝
−1 −1 0
0 1 0
1 0 1
0 0 −1

⎞⎟⎟⎠ .

As can be seen from this example, this incidence matrix has a column sum
equal to zero, which is a fact that holds for all incidence matrices since
every edge has to have exactly one tail and one head. We note that the
incidence matrix for a digraph D can be defined analogously by skipping
the preorientation that is needed for graphs. In this case, we denote the
incidence matrix by D(D).

The linear algebraic properties of the incidence matrix of graphs and di-
graphs provide insights into their many structural aspects. We elaborate on
this connection via the notion of a cycle space for a weakly connected di-
graph D, which is defined as the null space of the incidence matrix, that is,
the set of vectors z such that D(D)z = 0.

Definition 2.5. Given the incidence matrix D(D), a signed path vector is
a vector z corresponding to a path in D, such that the ith index of z takes

24 CHAPTER 2

the value of +1 if the edge i is traversed positively, −1 if it is traversed
negatively, and 0 if the edge is not used in the path.1

The following two observations point to the convenient means of express-
ing graph theoretic facts using linear algebra.
Lemma 2.6. Given a path with distinct initial and terminal vertices de-
scribed by a signed path vector z in the digraph D, the vector y = D(G)z
is such that its ith element takes the value of +1 if the vertex i is the initial
vertex of the path, −1 if is the terminal vertex of the path, and 0 otherwise.
Theorem 2.7. Given a weakly connected digraphD, the null space ofD(D)
is spanned by all linearly independent signed path vectors corresponding to
the cycles of D.

It is thus natural to refer to the null space of D(D) as the cycle space of
the digraph. The orthogonal complement of the cycle space, on the other
hand, is called the cut space of D, which is characterized by the range space
of D(D)T .

2.3.3 The Graph Laplacian

Another matrix representation of a graph G, which plays an important role
in this book, is the graph Laplacian, L(G). This matrix can be defined
in different ways, resulting in the same object. The most straightforward
definition of the graph Laplacian associated with an undirected graph G is

L(G) = ∆(G) − A(G), (2.9)

where ∆(G) is the degree matrix of G and A(G) is its adjacency matrix.
From this definition, it follows that for all graphs the rows of the Laplacian
sum to zero. For example, the graph Laplacian associated with the graph in
Figure 2.1 is

L(G) =

⎛⎜⎜⎜⎜⎝
1 −1 0 0 0
−1 3 −1 0 −1
0 −1 3 −1 −1
0 0 −1 2 −1
0 −1 −1 −1 3

⎞⎟⎟⎟⎟⎠ .

Alternatively, given an (arbitrary) orientation to the edge set E(G), the graph
Laplacian of G can be defined as

L(G) = D(Go)D(Go)T , (2.10)

1An edge is traversed positively in the path if the orientation of the edge conforms with
how the path is traversed.

GRAPH THEORY 25

where D(Go) is the corresponding incidence matrix for the oriented graph
G. This definition directly reveals that the graph Laplacian is in fact a sym-
metric and positive semidefinite matrix.

It should be noted that since the two definitions (2.9) and (2.10) are equiv-
alent, and since no notion of orientation is needed in (2.9), the graph Lapla-
cian is orientation independent. We will therefore adopt the convention of
using D(G) for the incidence matrix of the graph when the orientation of
G is arbitrary. Regardless of this fact, sometimes it proves useful to use
one of these two definitions for the graph Laplacian. As an example, one
can form the weighted graph Laplacian associated with the weighted graph
G = (V,E,w) as

Lw(G) = D(G)WD(G)T , (2.11)

where W is an m × m diagonal matrix, with w(ei), i = 1, . . . ,m, on the
diagonal. Note here that a labeling has been assumed over the edge set,
which is also needed in order to define the incidence matrix D(G).

2.3.4 Edge Laplacian

The edge Laplacian for an arbitrary oriented graph G is defined as

Le(G) = D(G)T D(G). (2.12)

Two key linear algebraic properties of Le(G) are as follows: (1) the set of
nonzero eigenvalues of Le(G) is equal to the set of nonzero eigenvalues
of L(G), and (2) the nonzero eigenvalues of Le(G) and L(G) are equal to
the square of the nonzero singular values of D(G). Moreover, consider the
graph G with p connected components Gi and associated incidence matrices
D(Gi), and let

D(G) = [D(G1) · · · D(Gp)].

Then the edge Laplacian of G has the block diagonal form

Le(G) =

⎡⎢⎣ D(G1)T D(G1) 0
. . .

0 D(Gp)T D(Gp)

⎤⎥⎦ . (2.13)

The edge Laplacian can thus be thought of as an “edge adjacency matrix”
in that edges that do not share a common vertex are considered nonadjacent
and the corresponding value in Le(G) becomes zero. On the other hand,
edges that do share a vertex are considered adjacent, and the sign of the cor-
responding entry in Le(G) gives information on the direction of both edges

26 CHAPTER 2

relative to the vertex they share. Finally, each edge is always considered
adjacent to itself; the number of common vertices between the edge and it-
self is thereby two. Hence, all diagonal entries of the edge Laplacian Le(G)
have the value 2.

2.3.5 Laplacian for Digraphs

We first define the notions of adjacency and degree matrices for directed
weighted graphs. Let D denote the underlying digraph; for the adjacency
matrix, we let

[A(D)]ij =
{

wij if (vj , vi) ∈ E(D),
0 otherwise, (2.14)

and for the diagonal degree matrix ∆(D) we set

[∆(D)]ii = din(vi) for all i, (2.15)

where din(v) is the weighted in-degree of vertex v, that is,

din(vi) =
∑

{j | (vj ,vi)∈E(D)}
wij .

We note that

∆(D) = Diag (A(D)1).

The corresponding (in-degree) weighted Laplacian is now defined by

L(D) = ∆(D) − A(D).

Note that by construction, for every digraph D, one has

1 ∈ N (L(D)),

that is, the vector of all ones is the eigenvector associated with the zero
eigenvalue of L(D). Our choice of “in-degree” as opposed to “out-degree”
to define the adjacency and Laplacian matrices for digraphs is primarily
motivated by how they will be used in the context of networked systems.
Essentially, the “in-degree” versions of these matrices capture more directly
how the dynamics of an agent is influenced by others.2

2In the same vein, the out degree Laplacian captures how each node in the network influ
ences other nodes.

GRAPH THEORY 27

2.4 ALGEBRAIC AND SPECTRAL GRAPH THEORY

Algebraic graph theory associates algebraic objects, such as matrices and
polynomials, to graphs, and by doing so makes available a range of algebraic
techniques for their study. Examples of objects that can represent graphs and
be algebraically manipulated include matrices and their eigenvalues. As
such, the degree, adjacency, incidence, and Laplacian matrices associated
with a graph are examples of objects in algebraic graph theory. In fact, the
study of the eigenvalues associated with these matrices belong to its own
subdiscipline of graph theory, namely spectral graph theory.

As an example of what can be accomplished by associating matrices with
graphs, consider the graph Laplacian L(G). This matrix is known to be sym-
metric and positive semidefinite; hence its real eigenvalues can be ordered
as

λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G),

with λ1(G) = 0.

Theorem 2.8. The graph G is connected if and only if λ2(G) > 0.

Proof. Since the null spaces of D(G)T and L(G) are the same, it suffices to
show that the null space of D(G)T has dimension one when the graph G is
connected. Suppose that there exists a vector z �∈ span{1}, with 1 being
the vector with 1s in all its entries, such that

zT D(G) = 0,

that is, when uv ∈ E then zv − zu = 0. However, since G is connected,
this implies that zv = zu for all u, v ∈ V and z ∈ span {1}. Thus, the
dimension of the null space of D(G)T is one if and only if the geometric,
and hence algebraic, multiplicity of the zero eigenvalue of the Laplacian,
namely λ1(G), is one.

Another classic result in algebraic graph theory is the matrix-tree theo-
rem. We state it in two pieces without proof; see notes and references. First,
let Lv denote the matrix obtained after removing the row and column that
index the vertex v from L(G).

Proposition 2.9. Consider the graph G on n vertices with n−1 edges. Then
det Lv = 1 if and only if G is a spanning tree.

28 CHAPTER 2

Theorem 2.10. Let t(G) be the number of spanning trees in G. Then
t(G) = detLv

for any v ∈ G.
A generalization of the matrix-tree theorem for weighted digraphs is as

follows; first a definition.

Definition 2.11. A digraph D is a rooted out-branching if (1) it does not
contain a directed cycle and (2) it has a vertex vr (the root) such that for
every other vertex v ∈ D there is a directed path from vr to v. In this
case, we refer to the out-branching as diverging from vr, or in short, a vr

out-branching.

An out-branching in D is spanning if its vertex set coincides with the
vertex set of D.

Theorem 2.12. Let v be an arbitrary vertex of a weighted digraph D. Then

detLv(D) =
∑
T∈Tv

∏
e∈T

w(e),

where Tv is the set of spanning v out-branchings in D,∏e∈T w(e) is the
product of weights on the edges of out-branching T , and Lv(D) is the matrix
obtained from L(D) by deleting the row and column that index the vertex v.

2.4.1 Laplacian Spectra for Specific Graphs

Although in general finding the Laplacian spectrum of arbitrary graphs is far
from trivial, there are certain classes of graphs whose spectrum, as well as
the associated eigenvectors, can be precisely characterized. In this section,
we present a few such examples.

Example 2.13. The Laplacian spectrum of the complete graph Kn: As
L(Kn) = −11T + nI , the spectrum of L(Kn) is that of −11T shifted
by n. Since the spectrum of the rank one matrix 11T is {0, 0, . . . , 0, n}, the
Laplacian spectrum ofKn is {0, n, . . . , n, n}.

A general technique that is often very useful for finding the spectrum of
the Laplacian, as well as the spectrum of the adjacency matrix of a graph, is
to interpret the definition of the eigenvalues and eigenvectors of a matrix in
terms of the means by which each node in the graph is assigned an eigen-
vector entry. For example, from the equation L(Kn)x = λx, defining the
eigenvalue λ corresponding to the eigenvector x, it follows that∑

j �=i

(xi − xj) = λxi,

GRAPH THEORY 29

where xi is, without loss of generality, nonzero. However, since

∑
j �=i

(xi − xj) = −

⎛⎝ n∑
j=1

xj

⎞⎠+ nxi,

it follows that for all x ⊥ 1, nxi = λxi, implying that λi = n.

Example 2.14. Spectrum of the n-cycle: since the n-cycle Cn is 2-regular,
it is sufficient to find the spectrum of the adjacency matrix of the n-cycle.
Let ω be the nth root of unity,

ej 2π
n = cos

2π
n

+ j sin
2π
n

,

for a positive integer n; see Figure 2.9. Now, let x = [1, ν, ν2, . . . νn−1]T ,
where ν ∈ {1, ω, ω2, . . . , ωn−1}, and consider

A(G)x = λx. (2.16)

The eigenvalue equation (2.16) implies that for i = 1, 2, . . . , n,

xi+1 + xi−1 = νi + νi−2 = (ν + ν̄)νi−1 = (ν + ν̄)xi,

where ν̄ denotes the complex conjugate of ν, the cycle graph has been la-
beled in an increasing manner, and the arithmetic for the indices above is
mod n.
This implies that ν + ν̄ is an eigenvalue of the adjacency matrix of Cn.

As we have n candidates for ν, we conclude that the eigenvalues of A(Cn)
are

2, 2 cos
2π
n

, . . . , 2 cos
2(n − 1)π

n
.

As Cn is 2-regular, it follows that the Laplacian spectrum of Cn is

0, 2 − 2 cos
2π
n

, . . . , 2 − 2 cos
2(n − 1)π

n
.

Example 2.15. A graph on n vertices is circulant if the ith vertex is adjacent
to (i + j)th and (i − j)th vertex (mod n) for each j in a particular list l.
Thus when l = {1}, the circulant graph is precisely the n-cycle. Moreover,
when l is {1, 2, 3} the circulant graph on seven nodes, isK7. It follows that

30 CHAPTER 2

1

ωω2

ω3

ω4 ω5

Re

Im

(a)

1

ζ5ζ4

ζ3

ζ2 ζ

Re

Im

(b)

Figure 2.9: The nth roots of unity for n = 6 in the complex plane: (a)
powers proceed counterclockwise, (b) powers proceed clockwise; note that
ζ = ω̄.

the Laplacian of a circulant graph is itself a circulant matrix, which is of
the general form ⎡⎢⎢⎢⎢⎢⎣

c0 cn−1 · · · c1

c1 c0 · · · c2

c2 c1 · · · c3
...

... · · · ...
cn−1 cn−2 · · · c0

⎤⎥⎥⎥⎥⎥⎦ (2.17)

for some c0, c1, c2, . . . , cn−1. The matrix of eigenvectors of the circulant
matrix is the Fourier matrix⎡⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 ζ ζ2 · · · ζn−1

1 ζ2 ζ4 · · · ζn−2

...
...

...
...

...
1 ζn−1 ζn−2 · · · ζ

⎤⎥⎥⎥⎥⎥⎦ ,

that is, the (i + 1)(j + 1)th entry of the Fourier matrix is ζij , where 0 ≤
i, j ≤ n−1 and ζ = ω̄, with ω being a root of unity. The Laplacian spectrum
of the circulant graph, on the other hand, is specified by the values

p(1), p(ζ), . . . , p(ζn−1),

GRAPH THEORY 31

where p(x) = co + c1x + · · · + cn−1x
n−1 when the Laplacian is put in the

form (2.17).

2.4.2 Eigenvalue Bounds

As we have seen above, the spectrum of the Laplacian3 contains informa-
tion about the structural properties of the graph, including its connectivity
(expressed in terms of an inequality) and the number of spanning trees (ex-
pressed in terms of an identity). In this subsection, we point out another set
of relations, expressed in terms of eigenvalue bounds for a few other fea-
tures of graphs. We will also discuss a useful machinery for insights into
how eigenvalues of the Laplacian change as the graph undergoes structural
surgery, such as edge addition or removal; see for example Exercise 2.15.

Let us first start by enhancing the definition of graph connectivity.

Definition 2.16. A vertex cut-set for G = (V,E) is a subset of V whose re-
moval results in a disconnected graph. The vertex connectivity of the graph
G, denoted by κo(G), is the minimum number of vertices in any of its vertex
cut-sets.

It is only natural to consider the analogous notion of connectivity pertain-
ing to the edges of the graph as well.

Definition 2.17. An edge cut-set in G is the set of edges whose deletion
increases the number of connected components of G. The edge connectivity
of the graph G, denoted by κ1(G), is the minimum number of edges in any
of its edge cut-sets.

The variational characterization of eigenvalues of symmetric matrices
turns out to provide a convenient machinery for generating a host of in-
equalities between graph parameters, such as vertex and edge cut-sets, and
Laplacian eigenvalues. This characterization asserts, for example, that

λ2(G) = min
x⊥1,‖x‖=1

xT L(G)x

and

λn(G) = max
‖x‖=1

xT L(G)x.

One important ramification of such a variational characterization of eigen-
values is that

3Our emphasis on the spectrum of the Laplacian is mainly motivated by our applications
in the subsequent sections, rather than a lack of appreciation for the well developed theory
of spectral graph theory via the adjacency matrix of the graph.

32 CHAPTER 2

λ2(G) ≤ κo(G) ≤ κ1(G) ≤ dmin(G),

provided that G is not the complete graph, and where dmin is the minimum
degree of the vertices in G.

We conclude this subsection by mentioning yet another useful way that
λ2(G) for a connected G, shows up, namely, in the context of Cheeger’s
inequality. The setup is as follows. If we consider a subset of vertices
S ⊂ V together with its complement Sc = V \S, we can ask how many
edges need to be cut in order to completely separate S from Sc, that is, to
quantify

ε(S, Sc) = card({vivj ∈ E | (vi ∈ S, vj ∈ Sc) or (vj ∈ S, vi ∈ Sc}).

As an example, consider the graph in Figure 2.10 where the number of edges
that must be cut to separate S from Sc is 5, that is, ε(S, Sc) = 5.

S Sc

ε(S, Sc) = 5

Figure 2.10: The number of edges that must be cut to separate S from its
complement is 5.

Now, assume that the nodes in the graph belong to a network, and if two
subsets get disconnected from each other, the agents that get separated are
essentially lost. Since there really are two sets that are lost from each other,
we consider the smaller to be the one that is actually lost. As such, we can
define the ratio of the cut to be

φ(S) =
ε(S, Sc)

min{card(S), card(Sc)} .

If we return to the example in Figure 2.10, we see that in this case card(S) =
9 > 7 = card(Sc), and hence φ(S) = 5/7.

The worst one can do in terms of losing vertices as compared to how many
edges need to be cut can thus be thought of as a measure of robustness in

GRAPH THEORY 33

the graph; this quality is known as the isoperimetric number of the graph

φ(G) = min
S∈2V

φ(S). (2.18)

Cheeger’s inequality states that

φ(G) ≥ λ2(G) ≥ φ(G)2

2dmax(G)
, (2.19)

where dmax(G) is the maximum degree achieved by any vertex in G.
In the following chapters, we will see that λ2(G) is important not only as a

measure of the robustness (or level of connectedness) of the graph, but also
for the convergence properties of a collection of distributed coordination
algorithms.

2.5 GRAPH SYMMETRIES

Graph theory has a number of intriguing connections with other areas of
discrete mathematics and in particular with abstract algebra. In this section,
we give an introduction to two important constructs associated with graphs
that are distinctively algebraic, namely, the symmetry structure in the graph
and its equitable partitions.

Definition 2.18. An automorphism of the graph G = (V,E) is a permuta-
tion ψ of its vertex set such that

ψ(i)ψ(j) ∈ E ⇐⇒ ij ∈ E.

The set of all automorphisms of G, equipped with the composition op-
erator, constitutes the automorphism group of G; note that this is a “finite”
group.4 It is clear that the degree of a node remains unchanged under the
action of the automorphism group, that is, if ψ is an automorphism of G then
d(v) = d(ψ(v)) for all v ∈ V .

Proposition 2.19. Let A(G) be the adjacency matrix of the graph G and
ψ a permutation on its vertex set V . Associate with this permutation the
permutation matrix Ψ such that

[Ψ]ij =
{

1 if ψ(i) = j,
0 otherwise.

4A finite group consists of a finite set of objects and a binary operation. The operation
is assumed to be closed with respect to the set and admits an identity and is associative;
moreover each element has an inverse with respect to this operation.

34 CHAPTER 2

Then ψ is an automorphism of G if and only if

Ψ A(G) = A(G)Ψ.

In this case, the least positive integer z for whichΨz = I is called the order
of the automorphism.

Of course, we cannot avoid mentioning a beautiful connection between
the graph automorphism and eigenvalues of the adjacency matrix.

Theorem 2.20. If all eigenvalues of the adjacency matrix for the graph are
simple, then every non-identity automorphism of G has order two.

We will not provide the proof of Theorem 2.20; however, we will see an
analogous statement and proof for the graph Laplacian in Chapter 10.

2.5.1 Interlacing and Equitable Partitions

A cell C is a subset of the vertex set V = [n]. A partition of the graph is
then a grouping of its node set into different cells.

Definition 2.21. An r-partition π of V , with cells C1, . . . , Cr, is said to
be equitable if each node in Cj has the same number of neighbors in Ci,
for all i, j. We denote the cardinality of the partition π by r = |π|. Let
bij be the number of neighbors in Cj of a node in Ci. The directed graph,
potentially containing self-loops, with the cells of an equitable r-partition
π as its nodes and bij edges from the ith to the jth cells of π, is called the
quotient of G over π, and is denoted by G/π. An obvious trivial partition is
the n-partition, π = {{1}, {2}, . . . , {n}}. If an equitable partition contains
at least one cell with more than one node, we call it a nontrivial equitable
partition (NEP), and the adjacency matrix of the quotient is specified by

[A(G/π)]ij = bij .

Equitable partitions of a graph can be obtained from its automorphisms.
For example, in the Peterson graph shown in Figure 2.11(a), one equitable
partition π1 (Figure 2.11(b)) is given by two orbits of the automorphism
group, namely the 5 inner vertices and the 5 outer vertices. The adjacency
matrix of the quotient is then given by

A(G/π1) =
[

2 1
1 2

]
.

The equitable partition can also be introduced by the equal distance par-
tition. Let C1 ⊂ V be a given cell, and let Ci ⊂ V be the set of vertices at

GRAPH THEORY 35

distance i−1 from C1. Then C1 is said to be completely regular if its dis-
tance partition is equitable. For instance, every node in the Peterson graph
is completely regular and introduces the partition π2 as shown in Figure
2.11(c). The adjacency matrix of this quotient is then given by

A(G/π2) =

⎡⎣ 0 3 0
1 0 2
0 1 2

⎤⎦ .

1

2

34

5

6

7

89

10

(a)

1

12 2
C1 C2

(b)

1 1

3

2

2

C1 C2 C3

(c)

Figure 2.11: Equitable partitions on (a) the Peterson graph G = J(5, 2, 0)
and the quotients, (b) the NEP introduced by the automorphism is π1 =
{C1, C2}, C1 = {1, 2, 3, 4, 5}, C2 = {6, 7, 8, 9, 10}, and (c) the NEP intro-
duced by equal-distance partition is π2 = {C1, C2, C3}, C1 = {1}, C2 =
{2, 5, 6}, C3 = {3, 4, 7, 8, 9, 10}.

The adjacency matrix of the original graph and its quotient are closely
related through the interlacing theorem. First, let us introduce the following
definition.

Definition 2.22. A characteristic vector pi ∈ Rn of a nontrivial cell Ci has
1s in components associated with Ci and 0s elsewhere.5 A characteristic
matrix P ∈ Rn×r of a partition π of V is a matrix with characteristic
vectors of the cells as its columns.

5A nontrivial cell is a cell containing more than one vertex.

36 CHAPTER 2

For example, the characteristic matrix of the equitable partition of the
graph in Figure 2.12(a) is given by

P =

⎡⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎦ , (2.20)

with the corresponding quotient in Figure 2.12(b).

1

2

3
4

5

(a)

C1
C2 C3

C4
1

11

2 2

1

(b)

Figure 2.12: (a) Equitable partition and (b) quotient of a graph

Lemma 2.23. Let P be the characteristic matrix of an equitable partition
π of the graph G, and let Â = A(G/π). Then A(G)P = PÂ and Â =
P †A(G)P , where P † = (P T P)−1P T is the pseudo-inverse of P .

As an example, the graph in Figure 2.12(a) has a nontrivial cell {2, 3}.
The adjacency matrix of original graph is

A(G) =

⎡⎢⎢⎢⎢⎣
0 1 1 0 0
1 0 0 1 0
1 0 0 1 0
0 1 1 0 1
0 0 0 1 0

⎤⎥⎥⎥⎥⎦ ,

GRAPH THEORY 37

while the adjacency matrix of the quotient is

Â = P †A(G)P =

⎡⎢⎢⎣
0 2 0 0
1 0 1 0
0 2 0 1
0 0 1 0

⎤⎥⎥⎦ .

Lemma 2.24. Let G = (V,E) be a graph with adjacency matrix A(G), and
let π be a partition of V with characteristic matrix P . Then π is equitable if
and only if the column space of P is A(G)-invariant, that is, A(G)R(P) ⊆
R(P).

SUMMARY

In this chapter, we provided an introduction to graph theory at the level
of providing the basic tools for reasoning about and analyzing networked
systems as they appear in this book. Specifically, we provided an overview
of the basic constructs in graph theory, for example, vertices and edges,
graphs, subgraphs, and digraphs. We then explored connections between
graphs and their algebraic representation in terms of adjacency, Laplacians,
and edge Laplacian matrices, as well as the applied aspects of the spectrum
of the graph Laplacian. We concluded with some of the algebraic properties
of graphs, namely, their automorphism group and equitable partitions.

NOTES AND REFERENCES

Graph theory is a rich area in discrete mathematics, often considered the
“other-half” of the general discipline of combinatorics. It is rather surpris-
ing that the simple structure of graphs, conveniently represented by dots and
lines, lends itself to a rich area of mathematical inquiry with many applica-
tions in science and engineering. In fact, as many engineering disciplines
move toward being more “networked,” it is not surprising that graph theory
has found itself at the heart of many networked sciences of current interest.

The origins of graph theory go back to Euler, who stated the first “the-
orem” in graph theory, namely, that given a graph, one can start from an
arbitrary vertex, transverse every edge exactly once, and come back to the
original vertex, if and if only every vertex has an even degree. The corre-
sponding path in the graph, when one exists, is referred to as the Eulerian
cycle. A glimpse in the beautiful historical book by Biggs, Lloyd, and Wil-
son [23], for example, reveals that the main thrusts in graph theory research

38 CHAPTER 2

for the first two hundred years since its inception pertained to electrical cir-
cuits, chemistry, polyhedra theory, planarity, and of course, coloring. Some
of the more recent applications of graph theory are in information networks,
sensor networks, social networks, large-scale networks, and network mod-
els such as those characterized by random, random geometric, and scale-free
networks.

Graph theory, like other branches of mathematics, has many subareas. A
few of them are extremal graph theory [29], topological graph theory [103],
algorithmic graph theory [98],[233], and network optimization [5]. Exten-
sions of basic graph theory that we believe will play important roles in net-
worked systems research are the theory of hypergraphs [19], matroids [188],
and connections with algebraic and combinatorial topology [195].

Most of the material in this chapter is standard and can be found in books
on graph theory such as [71],[101], which is why many of the proofs have
been omitted from this chapter. Example 2.2 refers to Euler’s theorem re-
lated to the existence of an Eulerian cycle in a graph. The edge Lapla-
cian was formally named and analyzed in [255], although other researchers
have used the same construct without naming it. The statement and proof
of the matrix-tree theorem (Theorems 2.9 and 2.10) is the celebrated re-
sult of Kirchhoff, who was motivated by his studies of electrical networks.
The generalization of the matrix-tree theorem stated as Theorem 2.12 for
weighted digraphs is due to Tutte [236].

Other names for out-branching often used by researchers are arbores-
cence and directed rooted spanning tree.6 Example 2.14 can be found in [148].
Example 2.15 pertains to discrete Fourier transforms and can be looked up
in Meyer [159]. Eigenvalue bounds can be found in [101]; we also recom-
mend the lecture notes by Spielman [222]. The Cheeger’s inequality hints
to a deep connection between differential geometry and graph theory–see
the manuscript by Chung [50]. A nice treatment on graph automorphisms
and equitable partitions of § 2.5 can be found in [101].

SUGGESTED READING

The suggested reading for this chapter are the books by Wilson [247], West
[243], Diestel [71], and Godsil and Royle [101], the latter devoted to al-
gebraic methods in graph theory. We also recommend the books by Bol-
lobás [28] and Bondy and Murty [30] for a comprehensive introduction to
graph theory. For a more problem-oriented approach to graph theory–and
combinatorics in general–we highly recommend Lovász [148].

6We found arborescence to be a bit cumbersome to spell and directed rooted tree to be a
little vague, as it does not hint that the spanning tree should be directed in the “right way.”

GRAPH THEORY 39

EXERCISES

Exercise 2.1. Show that the number of edges in any graph is half the sum of
the degrees of its nodes. Conclude that the trace of L(G) is always an even
number and that the number of odd degree nodes in any graph has to be even.

Exercise 2.2. The degree sequence for a graph is a listing of the degrees
of its nodes; thus K3 has the degree sequence 2, 2, 2. Is there a graph with
the degree sequence 3, 3, 3, 3, 5, 6, 6, 6, 6, 6, 6? How about with the degree
sequence 1, 1, 3, 3, 3, 3, 5, 6, 8, 9?

Exercise 2.3. Alkanes are chemical compounds that consist of carbon (C)
and hydrogen (H) atoms, where each carbon atom has four bonds and each
hydrogen atom only one. The graph of the alkane is obtained by denoting
each atom by a vertex and drawing an edge between a pair of vertices if
there is a bond between the corresponding atoms. Show that an alkane with
n carbon atoms assumes the chemical formula CnH2n+2, indicating that for
any alkane with n carbon atoms there are 2n + 2 hydrogen atoms. Show
that the graph of an alkane is a tree. Draw two realizations of C4H10.

Exercise 2.4. A graph is k-regular if the degree of every vertex is k; thus
K3 is 2-regular. What is the relationship between k in a k-regular graph and
the number of nodes in the graph other than k ≤ n − 1?

Exercise 2.5. Let G be a graph on n vertices with c connected compo-
nents. Show that rank L(G) = n − c.

Exercise 2.6. Show that any graph on n vertices with more than (n−1)(n−
2)/2 edges is connected.

Exercise 2.7. The complement of graph G = (V,E), denoted by G, is a
graph (V,E), where uv ∈ E if and only if uv �∈ E. Show that

L(G) + L(G) = nI − 11T .

Conclude that for 2 ≤ j ≤ n,

λj(G) = n − λn+2−j(G).

Exercise 2.8. The list adjacency of a graph is an array, each row of which is
initiated by a vertex in the graph and lists all vertices adjacent to it. Given
the list adjacency of a graph, write an algorithm (in your favorite language)
that checks whether the graph is connected.

40 CHAPTER 2

Exercise 2.9. Recall that Cheeger’s inequality states that

φ(G) ≥ λ2(G) ≥ φ(G)2

2dmax(G)
,

where φ(G) is the isoperimetric number of G that can be used as a robust-
ness measure of G to edge deletions. Construct a maximally robust graph
consisting of n vertices and n − 1 edges. Explain how would you do this
and, in particular, give the value of φ(G) for this maximally robust graph.

Exercise 2.10. The line graph of G is a graph whose vertex set is the set
of edges of G, and there is an edge between these vertices if the correspond-
ing edges in G are incident on a common vertex. What is the relationship
between the automorphism groups of a graph and its complement and its
line graphs?

Exercise 2.11. Show that any graph on n vertices that has more than n − 1
edges contains a cycle.

Exercise 2.12. Show that the graph and its complement cannot both be
disconnected.

Exercise 2.13. Show that for a graph G, D(G)D(G)T = ∆(G) − A(G).
Conclude that the graph Laplacian D(G)D(G)T is independent of the orien-
tation given to G for constructing D(G). Is the edge Laplacian D(G)T D(G)
independent of the orientation given to G for constructing D(G)?

Exercise 2.14. Show that for any graph G, λn(G) ≥ dmax(G).

Exercise 2.15. Let G = (V,E) be a graph, and let uv �∈ E for some
u, v ∈ V . Show that

λ2(G) ≤ λ2(G + e) ≤ λ2(G) + 2,

where G + e is the graph (V,E ∪ {e}).

Exercise 2.16. What are the eigenvalues and eigenvectors of the Lapla-
cian matrix for the complete graph Kn, the path graph Pn, and the complete
bipartite graph Kn,n?

Exercise 2.17. What is the automorphism group of the Peterson graph?

GRAPH THEORY 41

Exercise 2.18. A nontrivial equitable partition π of a graph is said to be
maximal if any other nontrivial, equitable partition of the graph contains no
fewer cells than π. Find the maximal, nontrivial equitable partition for the
graph below.

Exercise 2.19. Prove Theorem 2.7.

Chapter Three

The Agreement Protocol: Part I–The Static Case

“Whenever people agree with me
I always feel I must be wrong.”

— Oscar Wilde

Agreement is one of the fundamental problems in multiagent coordina-
tion, where a collection of agents are to agree on a joint state value. In
this chapter, we consider the dynamics of the so-called agreement protocol
over undirected and directed static networks. Our primary goal is to high-
light the intricate relationship between the convergence properties of this
protocol on one hand, and the structure of the underlying interconnection
on the other. We also explore connections between the agreement protocol
and the theory of Markov chains in addition to a decomposition framework
for the protocol’s dynamics.

Consider a situation where a group of sensors are to measure the temperature
of a given area. Although the temperature measured by each sensor will
vary according to its location, it is required that the sensor group–using an
information sharing network–agree on a single value which represents the
temperature of the area. For this, the sensor group needs a protocol over
the network, allowing it to reach consensus on what the common sensor
measurement value should be.

In this first chapter devoted to the agreement –or the consensus–protocol
over static networks, we explore the interdependency between the conver-
gence properties of such a protocol and the structural attributes of the under-
lying network. The significance of the agreement protocol is twofold. On
one hand, agreement has a close relation to a host of multiagent problems
such as flocking, rendezvous, swarming, attitude alignment, and distributed
estimation. On the other hand, this protocol provides a concise formalism
for examining means by which the network topology dictates properties of
the dynamic process evolving over it.

The agreement protocol involves n dynamic units, labeled 1, 2, . . . , n,
interconnected via relative information-exchange links. The rate of change

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 43

of each unit’s state is assumed to be governed by the sum of its relative
states with respect to a subset of other (neighboring) units. An example
of the agreement protocol with three first-order dynamic units is shown in
Figure 3.1.

1 2

3

ẋ2 = (x1 − x2) + (x3 − x2)ẋ1 = (x2 − x1) + (x3 − x1)

ẋ3 = (x1 − x3) + (x2 − x3)

Figure 3.1: Agreement protocol over a triangle

Denoting the scalar state of unit i as xi ∈ R, one then has

ẋi(t) =
∑

j∈N(i)

(xj(t) − xi(t)), i = 1, . . . , n, (3.1)

where N(i) is the set of units “adjacent to,” or neighboring, unit i in the
network. When the adopted notion of adjacency is symmetric, the overall
system can be represented by

ẋ(t) = −L(G)x(t), (3.2)

where the positive semidefinite matrix L(G) is the Laplacian of the agents’
interaction network G and x(t) = (x1(t), . . . , xn(t))T ∈ Rn. We refer
to (3.2) as the agreement dynamics.1

Example 3.1. (Symmetric Adjacency Relation) Consider the resistor-capaci-
tor circuit shown in Figure 3.2. Letting the values of all resistances and
capacitances to be 1 ohm and 1 farad, respectively, Kirchhoff’s current and
voltage laws lead to

v̇i(t) =
∑

j∈N(i)

(vj(t) − vi(t)),

1If xi ∈ Rs, s > 1, one can still obtain a compact description of (3.1), which is left to
the reader in Exercise 3.4.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 45

Denoting the speed of robot i by si, the dynamics of the resulting system
can be written as

ṡ1(t)=
1
2
(
(s3(t) − s1(t)

)
+
(
s2(t) − s1(t)

)
,

ṡ2(t)= s1(t) − s2(t),
ṡ3(t)= s2(t) − s3(t),

which assumes the form

ṡ(t) =

⎡⎣ −1 1
2

1
2

1 −1 0
0 1 −1

⎤⎦ s(t), (3.3)

where s(t) = [s1(t) s2(t) s3(t)]T . We note that the matrix (3.3) corre-
sponds to the negative of the in-degree Laplacian of the network shown in
Figure 3.3; thus

ṡ(t) = −L(D)s(t), (3.4)

where D is the underlying directed interconnection, that is, the weighted
digraph of the network.

We note that in the above examples, the dynamics of each vertex in the net-
work is “pulled” toward the states of the neighboring vertices. It is tempting
then to conjecture that asymptotically, all vertices will reach some weighted
average of their initial states, which also corresponds to the fixed point of
their collective dynamics. As such a state of agreement is of great interest
to us, we are obliged to formally define it.

Definition 3.3. The agreement set A ⊆ Rn is the subspace span{1}, that
is,

A = {x ∈ Rn |xi = xj, for all i, j}. (3.5)

Our first goal in this chapter is to expand upon the mechanism by which the
dynamics (3.2) over an undirected graph guides the vertices of the network
to their agreement state, or the consensus value. We will then revisit the
agreement protocol over directed networks, for example, those that can be
represented as in (3.4).

46 CHAPTER 3

3.1 REACHING AGREEMENT: UNDIRECTED NETWORKS

Recall from Chapter 2 that the spectrum of the Laplacian for a connected
undirected graph assumes the form

0 = λ1(G) < λ2(G) ≤ · · · ≤ λn(G), (3.6)

with 1, the vector of all ones, as the eigenvector corresponding to the zero
eigenvalue λ1(G). We note that L(G) is symmetric and L(G)1 = 0 for an
arbitrary undirected G. Let U = [u1 u2 · · · un] be the matrix consisting of
normalized and mutually orthogonal eigenvectors of L(G), corresponding
to its ordered eigenvalues (3.6). Furthermore, set

Λ(G) = Diag ([λ1(G), . . . , λn(G)]T).

Using the spectral factorization of the Laplacian, one has

e−L(G)t = e−(UΛ(G)UT) t = U e−Λ(G)t UT

= e−λ1(G)t u1u
T
1 + e−λ2(G)t u2u

T
2 + · · · + e−λn(G)t unuT

n .

Hence the solution of (3.2), initialized from x(0) = x0, is

x(t) = e−L(G)tx0,

which can be decomposed along each eigen-axis as

x(t) = e−λ1(G)t(uT
1 x0)u1 + e−λ2(G)t(uT

2 x0)u2

+ · · · + e−λn(G)t(uT
n x0)un. (3.7)

Theorem 3.4. Let G be a connected graph. Then the (undirected) agree-
ment protocol (3.2) converges to the agreement set (3.5) with a rate of con-
vergence that is dictated by λ2(G).

Proof. The proof follows directly from (3.7) by observing that for a con-
nected graph λi(G) > 0 for i ≥ 2; as always, λ1(G) = 0. Thus

x(t) → (uT
1 x0)u1 =

1T x0

n
1 as t → ∞, (3.8)

and hence x(t) → A;2 see Figure 3.4. As λ2(G) is the smallest positive
eigenvalue of the graph Laplacian, it dictates the slowest mode of conver-
gence in (3.8).

2See Appendix A.1 for a definition of convergence to a set.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 47

We note that as the states of the vertices evolve toward the agreement set,
one has

d

dt
(1T x(t)) = 1T (−L(G)x(t)) = −x(t)T L(G)1 = 0.

As such, the quantity 1T x(t) =
∑

i xi(t), that is, the centroid of the network
states, evaluated for any t ≥ 0, is a constant of motion for the agreement dy-
namics (3.2).3 Furthermore, the proof of Theorem 3.4 indicates that the state
trajectory generated by the agreement protocol converges to the projection
of its initial state, in the Euclidean norm, onto the agreement subspace, since

arg min
x∈A

‖x − x0‖ =
1T x0

1T 1
1 =

1T x0

n
1. (3.9)

1

1T (x − x0) = 0

x0

Figure 3.4: Trajectory of the agreement protocol retains the centroid of the
nodes’ states as its constant of motion.

The general form of the solution to the agreement dynamics, represented
in (3.7), indicates that in order to have convergence to the agreement sub-
space from an arbitrary initial condition, it is necessary and sufficient to
have λ2(G) > 0. As positivity of λ2(G) corresponds to the connectivity of
G (see Chapter 2), one concludes that the minimum order structure needed

3In reference to quantities such as energy in conservative dynamical systems.

48 CHAPTER 3

for asymptotic convergence to agreement is an interconnected network con-
taining a spanning tree; see Figure 3.5.

Figure 3.5: Two examples of trees on eight vertices

Proposition 3.5. A necessary and sufficient condition for the agreement
protocol (3.2) to converge to the agreement subspace (3.3) from an arbitrary
initial condition is that the underlying graph contains a spanning tree.

Example 3.6. As an example of the agreement protocol in action, consider
the so-called rendezvous problem, in which a collection of mobile agents–
with single integrator dynamics–are to meet at a single location. This lo-
cation is not given in advance and the agents do not have access to their
global positions. All they can measure is their relative displacements with
respect to their neighbors. By executing the agreement protocol

ẋi(t) = −
∑

j∈N(i)

(xi(t) − xj(t)),

where the position of agent i is given by xi ∈ Rp (with p = 2 for pla-
nar robots, and so on) one obtains the response shown in Figure 3.6. The
evolution of individual trajectories is shown in Figure 3.7.

3.2 REACHING AGREEMENT: DIRECTED NETWORKS

We now generalize the convergence analysis for the agreement protocol over
(undirected, unweighted) graphs to those over weighted directed networks,
that is, digraphs. In direct analogy with the agreement in the undirected case,
let us consider the weighted digraph shown in Figure 3.8, which corresponds
to the first-order dynamics

50 CHAPTER 3

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8
x i,1

 i=
1

15
Trajectories under the agreement protocol

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

t

x i,2
 i=

1
15

Figure 3.7: Trajectories when 15 planar agents execute the agreement pro-
tocol

systems such as (3.10) - (3.13) can be represented by

ẋ(t) = −L(D)x(t), (3.14)

where D is the underlying directed interconnection between the vertices.

Our goal in the rest of this section is to identify necessary and sufficient
conditions on the interconnection D that lead to the convergence of systems
of the form (3.14) to the agreement subspace. A moment’s reflection on
the mechanism by which an analogous objective was achieved for the undi-
rected network reveals the critical role played by the rank of the Laplacian,
or equivalently, the multiplicity of its zero eigenvalue, and how this alge-
braic condition relates to the structure of the graph. We start by restating a
construction for digraphs discussed in Chapter 2 that parallels the notion of
spanning trees for undirected graphs.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 51

1

2

3

w21

w42w32

w43

w34 4

Figure 3.8: Directed graph corresponding to (3.10) - (3.13)

Definition 3.7. A digraph D is a rooted out-branching if (1) it does not
contain a directed cycle and (2) it has a vertex vr (root) such that for every
other vertex v ∈ D there is directed path from vr to v; see Figure 3.9.

(a) Original Graph

vr

(b) Rooted Out Branching Subgraph

Figure 3.9: The left figure is an example of a digraph that contains a rooted
out-branching as a subgraph. The corresponding rooted out-branching is
given in the right figure, together with the root vertex vr.

Proposition 3.8. A digraphD on n vertices contains a rooted out-branching
as a subgraph if and only if rank L(D) = n − 1. In that case, N (L(D)) is
spanned by the vector of all ones.

Proof. There are several proofs for this statement; our favorite one is due to
Tutte. The statement of the proposition is equivalent to showing that zero, as

52 CHAPTER 3

the root of the characteristic polynomial of L(D), has algebraic multiplicity
one. Let us denote this characteristic polynomial as

pD(λ) = λn + αn−1λ
n−1 + · · · + α1λ + α0,

noting that α0 = 0 since zero is an eigenvalue of L(D). Thus

rank L(D) = n − 1

if and only if α1 is nonzero. In the meantime,

α1 =
∑

v

det Lv(D),

where Lv(D) is the matrix obtained by deleting the vth row and the vth
column of L(D). Concurrently, by the matrix-tree theorem (Theorem 2.12),
one has

detLv(D) �= 0

if and only if there is a rooted out-branching in D that is rooted at v. Hence,
α1 is nonzero if and only if there is a rooted out-branching rooted at some
v ∈ D. Then, the fact that N (L(D)) = span{1} follows directly from the
fact that L(D)1 = 0 and rank L(D) = n − 1.

Since an eigenvalue with algebraic multiplicity of one also has geometric
multiplicity of one (see Appendix A.2), for a digraph D that contains a
rooted out-branching

L(D) p = 0 implies that p ∈ span{1}.

It is instructive to examine the locations of other eigenvalues of L(D) be-
sides its zero eigenvalue. Let us first recall the celebrated Geršgorin disk
theorem.

Theorem 3.9. LetM = [mij] be an n×n real matrix. Then all eigenvalues
ofM are located in⋃

i

{
z ∈ C

∣∣∣ |z − mii| ≤
∑

j=1,...,n;j �=i

|mij|
}

.

Proposition 3.10. Let D be a weighted digraph on n vertices. Then the
spectrum of L(D) lies in the region

{z ∈ C | |z − d̄in(D)| ≤ d̄in(D) },

where d̄in denotes the maximum (weighted) in-degree in D. In other words,
for every digraph D, the eigenvalues of L(D) have non-negative real parts.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 53

Proof. Viewing the spectrum of L(D) in light of Theorem 3.9, we conclude
that the eigenvalues of L(D) lie in the region⋃

i

{z ∈ C | |z − din(vi)| ≤ din(vi)} .

The statement of the proposition now follows, as illustrated in Figure 3.10.

din(i)

din(i)

d̄in(i)

d̄in(i)

Figure 3.10: Geršgorin’s regions for the eigenvalues of L(D): the eigen-
value of L(D) are contained in a disk of radius d̄in centered at d̄in.

Localizing the spectrum of L(D) has ramifications for the convergence
properties of the system governed by (3.14).

Proposition 3.11. Let L(D) = PJ(Λ)P−1 be the Jordan decomposition
of the (in-degree) Laplacian for the digraph D. When D contains a rooted
out-branching, the nonsingular matrix P can be chosen such that

J(Λ) =

⎡⎢⎢⎢⎢⎢⎣
0 0 · · · 0
0 J(λ2) · · · 0
0 0 · · · 0
...

...
...

...
0 · · · 0 J(λn)

⎤⎥⎥⎥⎥⎥⎦ ,

54 CHAPTER 3

where the λis (i = 2, . . . , n) have positive real parts, and J(λi) is the
Jordan block associated with eigenvalue λi.4 Consequently,

lim
t→∞

e−J(Λ)t =

⎡⎢⎢⎢⎢⎢⎣
1 0 · · · 0
0 0 · · · 0
0 0 · · · 0
...

...
...

...
0 · · · 0 0

⎤⎥⎥⎥⎥⎥⎦ (3.15)

and

lim
t→∞

e−L(D)t = p1q
T
1 , (3.16)

where p1 and qT
1 are, respectively, the first column of P and the first row of

P−1, that is, where pT
1 q1 = 1.

Proof. Consider the Jordan decomposition of L(D); let the nonsingular ma-
trix P be such that

P−1L(D)P = J(Λ) =

⎡⎢⎢⎢⎣
J(0) 0 · · · 0

0 J(λ2) · · · 0
...

...
...

...
0 0 0 J(λn)

⎤⎥⎥⎥⎦ ,

where the λis are the eigenvalues of L(D). Since the digraph contains a
rooted out-branching, by Propositions 3.8 and 3.10, J1(0) = 0, and all other
eigenvalues of L(D) have positive real parts.

Now, note that

L(D)P = PJ(Λ),

which implies that L(D)p1 = 0; as a result, p1 belongs to span{1}. Simi-
larly, the relation

P−1L(D) = J(Λ)P−1

implies that the first row of P−1, q1, is the left eigenvector of L(D) associ-
ated with its zero eigenvalue. Since PP−1 = I , it follows that pT

1 q1 = 1.
Putting these observations together, we conclude that

e−L(D)t = P

⎡⎢⎢⎢⎣
e0 0 · · · 0
0 eJ(−λ2)t · · · 0
...

...
...

...
0 0 0 eJ(−λn)t

⎤⎥⎥⎥⎦P−1.

4Note that the number of Jordan blocks is not necessary the number of vertices in the
graph.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 55

Since all nonzero eigenvalues of L(D) have positive real parts, for all i > 1,

lim
t→∞

e−J(λi)t = 0,

and (3.15) - (3.16) follow.

Armed with these results, we are finally ready to state the main theorem
about the agreement protocol for directed, weighted networks.

Theorem 3.12. For a digraph D containing a rooted out-branching, the
state trajectory generated by (3.14), initialized from x0, satisfies

lim
t→∞

x(t) = (p1q
T
1)x0,

where p1 and q1, are, respectively, the right and left eigenvectors associated
with the zero eigenvalue of L(D), normalized such that pT1 q1 = 1. As a
result, one has x(t) → A for all initial conditions if and only if D contains
a rooted out-branching.

Proof. Choosing p1 = 1 in Proposition 3.11, by (3.16), one has

lim
t→∞

x(t) = (qT
1 x0)1,

with qT
1 1 = 1.

Recall that the constant of motion for the agreement protocol over an undi-
rected graph is the sum of the node states at any given time. Analogously,
we can identify the conserved quantity for the agreement protocol evolving
over digraphs as follows.

Proposition 3.13. Let q be the left eigenvector of the digraph in-degree
Laplacian associated with its zero eigenvalue. Then the quantity qT x(t)
remains invariant under (3.14).

Proof. Since qT L(D) = 0, one has

d

dt
{qT x(t)} = −qT {L(D)x(t)} = 0.

56 CHAPTER 3

3.2.1 Balanced Graphs

One of the consequences of Proposition 3.11 is that the agreement proto-
col over a digraph containing a rooted out-branching reaches the average
value of the initial states of the vertices if the left eigenvector of L(D) cor-
responding to its zero eigenvalue is a scalar multiple of the vector of all
ones. In that case, p1q

T
1 in Theorem 3.12 reduces to the matrix (1/n)11T .

This observation leads us to the notion of balanced digraphs.

Definition 3.14. A digraph is called balanced if, for every vertex, the in-
degree and out-degree are equal.

When the digraph is balanced, in addition to having L(D)1 = 0, one has

1T L(D) = 0.

Thus, if the digraph contains a rooted out-branching and is balanced, then
the common value reached by the agreement protocol is the average value
of the initial nodes, that is, the average consensus, since

lim
t→∞

x(t) =
1
n
11T x0.

Let us strengthen the above observation by first introducing a few defini-
tions.

Definition 3.15. A digraph is strongly connected if, between every pair of
distinct vertices, there is a directed path.

A digraph D is said to have been disoriented if all of its directed edges are
replaced by undirected ones.

Definition 3.16. A digraph is weakly connected if its disoriented version is
connected.

Some examples of digraphs illustrating these concepts are given in Figure
3.11.

Theorem 3.17. The agreement protocol over a digraph reaches the average
consensus for every initial condition if and only if it is weakly connected and
balanced.

Proof. A weakly connected balanced digraph is automatically strongly con-
nected (see Exercise 3.13); hence, it contains a rooted out-branching. And,
by Theorem 3.12, the corresponding agreement protocol converges to the
agreement subspace. Moreover, since the digraph is balanced, the proto-
col’s convergence is to the average consensus value.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 57

(a) Balanced (b) Unbalanced

(c) Strongly Connected (d) Weakly Connected

Figure 3.11: Digraphs over five nodes. The first two show balanced (in-
degree = out-degree) and unbalanced graphs; the second two show strongly
and weakly connected graphs.

Now, suppose that convergence to the average consensus value is in fact
achieved, that is, that

lim
t→∞

x(t) = lim
t→∞

e−L(D)tx0 =
1
n
11T x0

for every x0 ∈ Rn. Hence

lim
t→∞

e−L(D)t =
1
n
11T , (3.17)

where the convergence is with respect to any matrix norm. Since the left and
right eigenvectors of the matrix limt→∞ e−L(D)t, when convergent, have to
be eigenvectors of e−L(D), which in turn are left and right eigenvectors of
L(D), we conclude that 1 is the left and right eigenvector of L(D). Thus
L(D)1 = 0 and L(D)T 1 = α1 for some α. In the meantime, 1T L(D)T 1 =
(L(D)1)T 1 = α1T 1, and therefore α = 0 and the digraph is balanced.

The asymptotic convergence (3.17) now implies that zero, as an eigen-
value of the Laplacian for the disoriented digraph D,

L(D) + L(D)T ,

has algebraic multiplicity of one. Therefore, D is weakly connected.

58 CHAPTER 3

3.3 AGREEMENT AND MARKOV CHAINS

In this section, we explore a connection between the agreement protocol
and the theory of finite state, discrete time Markov chains. Markov chains
are defined in the following way. We consider a stochastic process X(k),
k = 0, 1, 2, . . . , which assumes one of the n states x1, . . . , xn at a given
time. In addition, the chain satisfies the Markov property, that is, for all
k ≥ 0,

Pr{X(k + 1) = xj |X(k) = xik ,X(k − 1) = xik−1
, . . . ,X(0) = xi0}

= Pr{X(k + 1) = xj |X(k) = xik}.

The Markov property allows us to characterize a Markov chain by its state
transition matrix P . The ijth entry of this matrix, pij , denotes the probabil-
ity that the random variable X, having state i at time k, assumes state j at
time k + 1, that is,

pij = Pr{X(k + 1) = xj |X(k) = xi}.

We note that since
n∑

j=1

pij = 1,

the matrix P is a stochastic matrix with a unit eigenvalue. (See Appendix
A.2.)

Now suppose that we define the probability distribution vector at time
k, denoted by π(k), whose ith entry encodes the probability that X(k) =
xi. Using the notion of a transition matrix allows us to monitor the time
evolution of the distribution vector as

π(k + 1)T = π(k)T P. (3.18)

We observe that if π(k) reaches a steady state value, say π∗, this state is
characterized by the left eigenvector of P associated with its unit eigenvalue,
as in this case, π∗ = P T π∗.

Let us now consider connections between the agreement protocol over
weighted digraphs (3.14) and the discrete time evolution defined by (3.18).
To this end, we monitor the progress of the agreement dynamics (3.14) at δ
time intervals,

z(k + 1) = e−δL(D)z(k), (3.19)

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 59

where z(k) = x(δk) and δ > 0. Our aim is to connect (3.19) with (3.18),
and for this we proceed to gather the necessary ingredients for treating (3.19)
as a Markov chain.

Proposition 3.18. For all digraphs D and sampling intervals δ > 0, one
has

e−δL(D)1 = 1 and e−δL(D) ≥ 0;

that is, for all D and δ > 0, e−δL(D) is a stochastic matrix. In fact, the right
and left eigenvectors of e−δL(D) are those of L(D), respectively, associated
with eigenvalues eδλi , i = 1, . . . , n.

Proof. We first observe that

e−δL(D)1 =

⎛⎝ ∞∑
j=0

(−δ)j

j!
L(D)j

⎞⎠1 =
(−δ)0

0!
L(D)01 = 1,

which takes care of the first part of the proof.
Now, since −L(D) has the property that all of its off-diagonal elements

are non-negative, it is an “essentially non-negative” matrix, that is, −L(D)+
sI is a non-negative matrix for a sufficiently large s (in this case, any s ≥
n − 1 would suffice).

Moreover, it can be shown that for an essentially non-negative matrix C ,
and all t ≥ 0, the matrix exponential etC is a non-negative matrix. Hence
e−δL(D) is a non-negative matrix, which completes the proof.

A direct consequence of Proposition 3.18 is the following fact:

Corollary 3.19. The state of the nodes, during the evolution of the agree-
ment protocol over a digraph D, at any time instance, is a convex combina-
tion of the values of all nodes at the previous instance.

Proof. By Birkhoff’s theorem (see Appendix A.2), any stochastic matrix is
a convex combination of permutation matrices. As the matrix e−δL(D) is
stochastic for δ > 0, the corollary follows from (3.19).

Example 3.20. Consider the agreement dynamics associated with the di-
graph in Figure 3.8, with weights w12 = 1, w23 = 2, w43 = 4, w34 = 3,
and w24 = 2. For this digraph, we have

e−L(D) =

⎡⎢⎢⎣
1.0000 0 0 0
0.6321 0.3679 0 0
0.3996 0.4651 0.0580 0.0773
0.3996 0.4651 0.0579 0.0774

⎤⎥⎥⎦ .

60 CHAPTER 3

The corresponding Markov chain for δ = 1 is shown in Figure 3.12.

1

0.6321
0.3679

0.3996

0.0580

0.3996

0.0774

0.4651 0.4651

1

2

3 4

0.0579

0.0773

Figure 3.12: The Markov chain associated with Example 3.20 (for δ = 1
after one time step)

One last piece is needed for completing the correspondence between the
agreement dynamics (3.14) and Markov chains. The missing piece pertains
to the non-negativity and normalization of the nodes’ states. Recall that the
“state” in the Markov chain governed by (3.18) is a probability distribution
vector, that is, it belongs to the unit simplex. However, the state of the
agreement dynamics (3.14) is an arbitrary vector in Rn.

Proposition 3.21. The behavior of the agreement dynamics (3.14) is char-
acterized by its action on the unit simplex.

Proof. Consider the normalization of the initial state of the sampled-time
agreement dynamics (3.19) via

z(0) = αz̃(0) + β1,

in such a way that z̃(0) belongs to the unit simplex. Then

e−δL(D)z(0) = αe−δL(D)z̃(0) + β1.

It thus follows that the evolution of the agreement protocol can be viewed
in the context of a Markov chain via an affine transformation.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 61

The close correspondence between the agreement protocol and general
theory of Markov chains–as suggested by this section–provides a convenient
avenue for interpreting results on the agreement protocol in terms of the
well-developed theory of Markov chains.

3.4 THE FACTORIZATION LEMMA

It is interesting to see if it is possible to build complex graphs (or interaction
networks) from atomic graphs, while at the same time being able to analyze
the performance of the agreement protocol solely in terms of the individual
atomic graphs. In this section we focus on this issue by investigating cer-
tain properties of the agreement protocol over Cartesian products of graphs.
We will relate these properties to properties associated with the individual
agreement dynamics on the corresponding atomic graphs.

As we will see, due to an intricate connection between the agreement
protocol over a connected graph and its “prime factors” (a term that will
be defined shortly), we will see that: (1) the trajectories generated by the
agreement dynamics over the Cartesian product of a finite set of graphs is in
fact the Kronecker product of the agreement trajectories over the individual
graphs, and (2) the agreement dynamics over any connected graph can be
factored in terms of the agreement dynamics over its prime decomposition.
The Cartesian product for a pair of graphs G1 = (V1, E1) and G2 = (V2, E2),
denoted by

G = G1�G2,

has its vertex set V1×V2, and any two vertices (v1, v2) and (v′1, v
′
2) in V (G)

are adjacent if and only if either v1 = v′1 and (v2, v
′
2) is an edge in E2, or

v2 = v′2 and (v1, v
′
1) is an edge in E1. An example is given in Figure 3.13.

The Cartesian product is commutative and associative, that is, the prod-
ucts

G1�G2 and G2�G1

are isomorphic; similarly

(G1�G2)�G3 and G1� (G2�G3)

are isomorphic.
The Cartesian product preserves connectedness properties of graphs. Thus,

if both G1 and G2 are connected then G = G1�G2 is connected.
One of the simplest examples of a Cartesian product is the product of two

edges: it results in a cycle on four vertices. Another example is the Carte-
sian product of two paths that results in a rectangular grid. More elaborate

62 CHAPTER 3

G2G1

(v14, v22)

(v13, v21) (v13, v23)

(v11, v21)

(v12, v21)

(v14, v21)

(v11, v22)

(v12, v22)

(v13, v22)

(v11, v23)

(v12, v23)

(v14, v23)

G1

v11 v12

v13

v14

G2

v21 v22 v23

Figure 3.13: The Cartesian product of two graphs G1 and G2

examples include: (1) the product of n copies of P2 is a hypercube Qn,5
(2) the product of two hypercube graphs is another hypercube, Qn� Qm =
Qn+m; (3) the graph of an n-prism is the Cartesian product of an edge and
the n-cycle; and (4) Rook’s graph is the Cartesian product of two complete
graphs.

Of fundamental importance in proving the main result of this section, the
factorization lemma, is the relationship between the Laplacian of a pair of
graphs and the Laplacian of their Cartesian product.6

Lemma 3.22. Let G1 and G2 be a pair of graphs on n and m vertices,

5A hypercube is a graph with vertices as the n tuple (b1, b2, · · · , bn), with bi ∈ {0, 1},
and there is an edge between the vertices if the corresponding n tuples differ at only one
component.

6See Appendix A.2 for a review of Kronecker products.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 63

respectively. Then

L(G1�G2)= L(G1) ⊗ Im + In ⊗ L(G2)
= L(G1) ⊕ L(G2), (3.20)

that is, the Kronecker sum of the two graph Laplacians.

We leave the proof of this lemma as an exercise. But, as its direct conse-
quence, using the properties of the Kronecker sum, we can conclude that
the Laplacian spectrum of the Cartesian product of G1�G2, on n and m
vertices, respectively, is the set

{λi(G1) + λj(G2) | 1 ≤ i ≤ n, 1 ≤ j ≤ m)}.
As a result, the second smallest eigenvalue is

λ2(G1�G2) = min{λ2(G1), λ2(G2)}.
In other words, the slowest mode of convergence in the agreement protocol
over the Cartesian product of two graphs is dictated by the graph that is the
least connected algebraically.

Another immediate ramification of how the Laplacian of the Cartesian
product of a pair of graphs relates to the individual graph Laplacians pertains
to the eigenvectors.
Lemma 3.23. Let G1 and G2 be a pair of graphs on n and m vertices,
respectively. Furthermore, assume that

λ1, λ2, . . . , λn and µ1, µ2, . . . , µm

are the eigenvalues of L(G1) and L(G2), respectively, corresponding to the
eigenvectors

u1, u2, . . . , un and v1, v2, . . . , vm.

Then

ui ⊗ vj, i = 1, 2, . . . , n, j = 1, 2, . . . ,m,

is the eigenvector associated with the eigenvalue λi + µj of L(G1�G2).
Proof. This follows directly from the properties of Kronecker sums and
products (see Appendix A.2) as,

L(G1�G2)(ui ⊗ vj)= {L(G2) ⊕ L(G1)}(ui ⊗ vj)
= (In ⊗ L(G2))(ui ⊗ vj) + (L(G1) ⊗ Im)(ui ⊗ vj)
= {(Inui) ⊗ (L(G2)vj)} + {(L(G1)ui) ⊗ (Imvj)}
= ui ⊗ µjvj + λiui ⊗ vj

= (λi + µj)(ui ⊗ vj).

64 CHAPTER 3

3.4.1 Graph Decomposition and the Factorization Lemma

The graph Cartesian product allows us to construct large-scale graphs via a
systematic procedure applied on a set of smaller-sized, atomic graphs. How-
ever, the application of the Cartesian product in the context of the agree-
ment protocol over large-scale networks would be more explicit if arbitrary
graphs could also be represented, or factored, in terms of the products of
certain atomic graphs. Naturally, the notion of “small” (or atomic) graphs
hinges upon their further factorizability.

A graph is called prime if it cannot be factored or decomposed as a prod-
uct of nontrivial graphs; a graph is trivial if it consists of a single vertex.
Specifically, a graph is called prime if the identity G = G1�G2 suggests that
either G1 or G2 is trivial. We call a nonprime, nontrivial graph a composite
graph. The importance of prime graphs in the general set of finite graphs is
highlighted through the following fundamental result.

Theorem 3.24. Every connected graph can be written as a Cartesian prod-
uct of prime graphs. Moreover, such a decomposition is unique up to a
reordering of factors.

Example 3.25. The composite graph G shown on the left of Figure 3.14 can
be decomposed as the Cartesian product of three (prime) complete graphs
on two vertices, as shown on the right.

We now present the main result of this section, which we will refer to as
the factorization lemma for the agreement dynamics.

Lemma 3.26 (Factorization Lemma). Let G1,G2, . . . ,Gn be a finite set of
graphs and consider x1(t), x2(t), . . . , xn(t) to be states of the atomic agree-
ment protocols,

ẋ1(t) =−L(G1)x1(t),
ẋ2(t) =−L(G2)x2(t),

...
ẋn(t) =−L(Gn)xn(t),

initialized from x1(0), . . . , xn(0). Then the state trajectory generated by the
agreement protocol

ẋ(t) = L(G1�G2� · · ·�Gn)x(t) (3.21)

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 65

G

G1

G2

G3

=

Figure 3.14: Prime factorization of a composite graph, G = G1�G2�G3

is

x(t)= x1(t) ⊗ x2(t) ⊗ · · · ⊗ xn(t), (3.22)

when (3.21) is initialized from

x1(0) ⊗ x2(0) ⊗ · · · ⊗ xn(0).

Proof. Due to the associativity of the Cartesian product, it suffices to prove
the theorem for the case of n = 2. Consider graphs G1 = (V1, E1) and
G2 = (V2, E2) with |V1| = n and |V2| = m. Moreover, let (λj , uj), j =
1, 2, . . . , n, and (µi, vi), i = 1, 2, . . . ,m, be the set of eigenvalues and the
associated normalized, mutually orthogonal eigenvectors for the Laplacian
matrices L(G1) and L(G2), respectively. Since

ẋ1(t) = −L(G1)x1(t) and ẋ2(t) = −L(G2)x2(t),

one has

x1(t) = e−L(G1)tx1(0) =
∑

i

e−λit uiu
T
i x1(0)

and

x2(t) = e−L(G2)tx2(0) =
∑

j

e−µjt vjv
T
j x2(0).

66 CHAPTER 3

Thus

x1(t) ⊗ x2(t)

=
n∑

i=1

(x1(0)T ui)uie
−λit} ⊗

⎧⎨⎩
m∑

j=1

(x2(0)T vj)vje
−µjt

⎫⎬⎭
=

n∑
i=1

m∑
j=1

(x1(0)T ui)uie
−λit ⊗ (x2(0)T vj)vje

−µjt

=
n∑

i=1

m∑
j=1

(x1(0)T ui)(x2(0)T vj)(ui ⊗ vj)e−(µi+λj)t

=
n∑

i=1

m∑
j=1

{
(ui ⊗ vj)T (x1(0) ⊗ x2(0))(ui ⊗ vj)e−(λi+µj)t

}
.

Denote by z(0) = x1(0) ⊗ x2(0), wij = ui ⊗ vj , and ζij = λi + µj , for
i = 1, 2, . . . , n and j = 1, 2, . . . ,m. Hence

x1(t) ⊗ x2(t) =
n∑

i=1

m∑
j=1

{wT
ijz(0)}wij e−ζijt,

which is the state trajectory generated by the agreement protocol over the
product agreement dynamics

ż(t) = −L(G1�G2)z(t),

when initialized from z(0), and the proof follows.

Using Theorem 3.24 we can also state the following corollary.

Corollary 3.27. The agreement dynamics over a composite graph can al-
ways be represented as a Kronecker product of agreement dynamics over its
prime factors. Moreover, such a factorization is unique up to a reordering.

Example 3.28. Consider the agreement protocol on the composite graph G
shown in the left side of Figure 3.14. Since G can be decomposed as the
Cartesian product of three complete graphs on two vertices, the agreement
dynamics on G corresponds to the Kronecker product of the three appropri-
ately initialized atomic agreement dynamics, each evolving on a complete
graph on two vertices.

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 67

SUMMARY

In this chapter we introduced the agreement protocol for static undirected
and directed graphs. For undirected graphs, we saw that ẋ(t) = −L(G)x(t)
drives the state x(t) asymptotically to the agreement set A as long as G
is connected. In fact, all elements of x(t) will in this case approach the
initial centroid (1/n)1T x(0) as t → ∞. Similarly, the directed agreement
protocol ẋ(t) = −L(D)x(t) drives x to A as long as the digraph D contains
a rooted out-branching. In both cases, the rate of convergence is dictated by
the second smallest eigenvalue of the graph Laplacian. We then explored
connections between the agreement protocol and Markov chains, as well as
a decomposition formalism for the protocol using the Cartesian product of
graphs.

NOTES AND REFERENCES

The agreement protocol (as well as its various extensions) has received con-
siderable attention in the systems and robotic community during the past
decade. The formalisms and formulations presented in this chapter owe
much to a number of research papers, some more recent than others. In par-
ticular, the specific form of the protocol appeared in the work of Olfati-Saber
and Murray [182], with the adjustment of using the “in-degree” Laplacian
(for example, the diagonal entries of L(D) are the in-degrees of the ver-
tices) instead of the “out-degree” version used in [182]. The protocol can
also be viewed as the discrete heat equation (without a boundary condition)
on a manifold (induced by the graph), which has been studied extensively
in partial differential equations and differential geometry; see [207].

The discrete-time version of the agreement protocol that leads to an it-
eration of the form x(k + 1) = Wx(k), with W a stochastic matrix, has a
much longer history, for example, as studied in the theory of Markov chains.
An analogous setup has also appeared in the area of chaotic iterations and
asynchronous distributed multisplitting methods in numerical linear algebra,
with less emphasis on the effect of the underlying information-exchange net-
work on the convergence properties of the corresponding numerical meth-
ods; see [22],[38],[45],[75]. However, in a setting that is closer to our dis-
cussion, the discrete version of the agreement protocol was discussed in the
work of DeGroot [64]; see also Chatterjee and Seneta [44]. The observation
that the multiplicity of the zero eigenvalue of the Laplacian is related to the
existence of an out-branching is due to Ren and Beard [203], Agaev and
Chebotarev [4], and Lafferriere, Williams, Caughman, and Veerman [140].

68 CHAPTER 3

The factorization lemma comes from Nguyen and Mesbahi [179]; how-
ever, similar points of view have been explored in the theory of random
walks; see the book by Woess [248]. For a detailed convergence analysis
of the agreement problem and repeated averaging, see also Olshevsky and
Tsitsiklis [187]. Graph products is the subject of the book by Imrich and
Klavar [121], where the Cartesian product of graphs and the corresponding
factorization results are discussed. For the extension of the protocol to the
case where the state of each agent is constrained to a convex set, see [173].

We also refer the reader to the notes and references for Chapter 4 for
pointers to various extensions of the agreement protocol, particularly, when
the underlying graph or digraph is allowed to be time-varying.

SUGGESTED READING

The suggested readings for this chapter are Ren and Beard [204] on the
agreement protocol, and Chapter 8 of Meyer [159], which provides a lucid
introduction to the theory of non-negative matrices and Markov chains.

EXERCISES

Exercise 3.1. Simulate the agreement protocol (3.2) for a graph on five
vertices. Compare the rate of convergence of the protocol as the number
of edges increases. Does the convergence of the protocol always improve
when the graph contains more edges? Provide an analysis to support your
observation.

Exercise 3.2. Consider the digraph D and the following symmetric protocol

ẋ(t) =
1
2
{L(D) + L(D)T }x(t).

Does this protocol correspond to the agreement protocol on a certain graph?
What are the conditions on the digraph D such that the resulting symmetric
protocol converges to the agreement subspace?

Exercise 3.3. The reverse of D is a digraph where all directed edges of
D have been reversed. A disoriented digraph is the graph obtained by re-
placing the directed edges of the digraph with undirected ones. Prove or
disprove:

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 69

1. The digraph D is strongly connected if and only if its reverse is strongly
connected.

2. A digraph contains a rooted out-branching if and only if its reverse
digraph contains one.

3. If the disoriented graph of D is connected, then either the digraph or
its reverse contain a rooted out-branching.

4. A digraph is balanced if and only if its reverse is balanced.

Exercise 3.4. The Kronecker product of two matrices A = [aij] ∈ Rn×m

and B = [bij] ∈ Rp×q, denoted by A ⊗ B, is the np × mq matrix⎡⎢⎢⎢⎢⎢⎣
a11B · · · a1mB
a21B · · · a2nB
a31B · · · a3nB

...
...

...
an1B · · · anmB

⎤⎥⎥⎥⎥⎥⎦ .

Suppose that the state of each vertex in the agreement protocol (3.1) is a
vector in Rs, for some positive integer s > 0. For example, xi might be the
position of particle i along a line, that is, s = 1. How would the compact
form of the agreement protocol (3.2) be modified for the case when s ≥ 2?
Hint: use Kronecker products.

Exercise 3.5. How would one modify the agreement protocol (3.1) so that
the agents converge to an equilibrium x̄, where x̄ = α1 + d for some given
d ∈ Rn and α ∈ R?

Exercise 3.6. The second-order dynamics of a unit particle i in one di-
mension is

d

dt

[
pi(t)
vi(t)

]
=
[

0 1
0 0

] [
pi(t)
vi(t)

]
+
[

0
1

]
ui(t),

where pi and vi are, respectively, the position and the velocity of the parti-
cle with respect to an inertial frame, and ui is the force and/or control term
acting on the particle. Use a setup, inspired by the agreement protocol, to
propose a a control law ui(t) for each vertex such that: (1) the control input
for particle i relies only on the relative position and velocity information
with respect to its neighbors; (2) the control input to each particle results in
an asymptotically cohesive behavior for the particle group, that is, the po-
sitions of the particles remain close to each other; and (3) the control input
to each particle results in having a particle group that evolves with the same
velocity. Simulate your proposed control law.

70 CHAPTER 3

Exercise 3.7. How would one extend Exercise 3.6 to n particles in three
dimensions?

Exercise 3.8. Consider the uniformly delayed agreement dynamics over
a weighted graph, specified as

ẋi(t) =
∑

j∈N(i)

wij(xj(t − τ) − xi(t − τ)), i = 1, · · · , n,

for some τ > 0. Show that this delayed protocol is stable if

τ <
π

2λn(G)
,

where λn(G) is the largest eigenvalue of the corresponding weighted Lapla-
cian. Conclude that, for the delayed agreement protocol, there is a trade-
off between faster convergence rate and tolerance to uniform delays on the
information-exchange links.

Exercise 3.9. A matrix M is called essentially non-negative if there ex-
ists a sufficiently large µ such that M + µI is non-negative, that is, all its
entries are non-negative. Show that etM for an essentially non-negative ma-
trix M is non-negative when t ≥ 0.

Exercise 3.10. An averaging protocol for n agents, with state xi, i =
1, 2, . . . , n, is the discrete-time update rule of the form

x(k + 1) = Wx(k), k = 0, 1, 2, . . . , (3.23)

where x(k) = [x1(k), x2(k), . . . , xn(k)]T and W is a stochastic matrix.
Derive the necessary and sufficient conditions on the spectrum of the matrix
W such that the process (3.23) steers all the agents to the average value of
their initial states.

Exercise 3.11. Consider vertex i in the context of the agreement protocol
(3.1). Suppose that vertex i (the rebel) decides not to abide by the agreement
protocol, and instead fixes its state to a constant value. Show that all vertices
converge to the state of the rebel vertex when the graph is connected.

Exercise 3.12. A geometric graph on the unit square is generated by placing
n points on the unit square and having (vi, vj) ∈ E(G) when ‖xi−xj‖ ≤ ρ,
where xi is the coordinate of vertex i and ρ is a given threshold distance for
the existence of a link between a pair of vertices. Compute the Laplacian
for such graphs on hundred nodes and various values of ρ ∈ (0, 1). What is

THE AGREEMENT PROTOCOL: PART I THE STATIC CASE 71

your estimate on how λ2(G) grows as a function of ρ?

Exercise 3.13. Show that a balanced digraph is weakly connected if and
only if it is strongly connected.

Exercise 3.14. Show that if graphs G1 and G2 are connected, then their
Cartesian product is connected.

Exercise 3.15. Prove Lemma 3.22.

Exercise 3.16. Consider a network of n processors, where each processor
has been given an initial computational load to process. However, before the
actual processing occurs, the processors go through an initialization phase,
where they exchange certain fractions of their loads with their neighbors in
the network. Specifically, during this phase, processor i adopts the load-
update protocol

pi(k + 1) = pi(k) −
∑

j∈N(i)

wij(pi(k) − pj(k)), k = 0, 1, 2 . . . , (3.24)

that is, it sends a fraction wij of its load imbalance with its neighbors to
each of them. What is the necessary and sufficient condition on the weights
wij in (3.24) such that this initialization phase converges to a balanced load
for all processors when the network is (1) a path graph, (2) a cycle graph, or
(3) a star graph?

Exercise 3.17. Given two square matrices A and B, show that

eA⊕B = eA ⊗ eB ,

and use this to provide an alternate (shorter) proof for Lemma 3.26.

Exercise 3.18. Let the disagreement vector be

δ(t) =
(

I − 1
n
11T

)
x(t).

Find the matrix M such that δ̇(t) = Mδ(t), under the assumption that
ẋ(t) = −L(G)x(t) for some graph G.

Chapter Four

The Agreement Protocol: Part II–Lyapunov and

LaSalle

“Classification of mathematical problems as linear and nonlinear
is like classification of the Universe as bananas and non-bananas.”

— unknown source

In this chapter, we consider variations on the basic theme of the agreement
protocol. This includes viewing the protocol in the context of Lyapunov
theory, which allows for a seamless generalization of its behavior when it
evolves over switching networks. We also introduce an alternative repre-
sentation of the agreement protocol when the dynamics of the edges of the
network, as opposed to its nodes, is monitored. We then examine nonlinear
extensions of the agreement problem via the passivity framework.

Lyapunov theory is an intuitive framework for the analysis of asymptotic
properties of dynamical systems–one with far-reaching consequences. The
power and convenience of using this framework is the relative ease by which
one can analyze the stability of dynamical systems with nonlinearities, noise,
and delays, and to incorporate control inputs to improve the nominal perfor-
mance of the system.1 In the first part of this chapter, we will explore the
utility of the basic Lyapunov machinery in the realm of the agreement pro-
tocol.

4.1 AGREEMENT VIA LYAPUNOV FUNCTIONS

4.1.1 Agreement over Undirected Graphs

Using Lyapunov theory for analyzing the agreement protocol (3.2), at first,
seems like bringing in a bulldozer for moving a piano. This is in fact the
case. The key realization is that adding things on top of the piano does not
prevent the machinery from going through, that is, we can expand on the

1When inspired or struck by the “right” Lyapunov function.

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 73

problem class without having to change the analysis tools. The Lyapunov
approach adopted for the agreement problem (3.2) proceeds like this. Given
the connected graph G, consider

V (x(t)) =
1
2

x(t)T x(t), (4.1)

that is, half of the sum of squares of the vertex states. We also note that the
function V (x) is an affine transformation of the quadratic form

q(x(t)) = x(t)T L(Kn)x(t),

as it, under the agreement protocol (3.2), becomes

q(x(t)) = x(t)T (nI − 11T)x(t)
= nx(t)T x(t) − (1T x(t))2

= nx(t)T x(t) − (1T x(0))2,

since 1T x(0) = 1T x(t) for all t; as before, Kn is the complete graph over
n vertices.

Now, consider the time-evolution of the function V (x) (4.1) along the
trajectory generated by (3.2), which is given by

V̇ (t) = −x(t)T L(G)x(t).

Since L(G) is positive semidefinite, the function V (4.1) is a weak Lyapunov
function for (3.2) (see the Appendix A.3). Moreover, when G is connected,
the largest invariant set contained in the set

{x ∈ Rn | V̇ (t) = 0} = span {1}

is exactly the null space of L(G). Thus, from LaSalle’s invariance principle,
convergence to span{1} follows.

Let us see how this Lyapunov-based approach would be modified if the
convergence of the agreement protocol over a strongly connected digraph is
being considered. First, consider the set

{x ∈ Rn | V̇ (t) = 0} = {x ∈ Rn |xT (L(D) + L(D)T)x = 0}. (4.2)

As D is strongly connected, the largest invariant set contained in (4.2) is
still the null space of L(D), which, in turn, is parameterized as span{1};
hence the essential component of the approach, involving LaSalle’s invari-
ance principle for connected graphs, remains intact.

How about the more general scenario when the digraph is not necessar-
ily strongly connected, yet contains a rooted out-branching? Of course, as

74 CHAPTER 4

we have seen in the previous chapter, the agreement protocol still converges
to the agreement subspace–but we are interested in a “Lyapunov-type argu-
ment” to account for this phenomenon. It turns out that in order to adopt
a Lyapunov-type argument for this case, one has to change the underlying
quadratic structure of the Lyapunov function (4.1).

We will address this in the next section, but before we do, let us point
out how the Lyapunov approach can be adopted for the case when the un-
derlying connected graph, or balanced digraph, in the agreement protocol
undergoes structural changes over time. When all graphs or digraphs are,
respectively, connected or strongly connected in this switched agreement
protocol, the sum of squares of the state serves as a common weak Lya-
punov function for (3.2). (See Appendix A.3.) In this light, suppose that the
digraph D that is undergoing structural changes can switch among a finite
number of possible strongly connected digraphs

{D1,D2, . . . ,Dm}.
Then, with respect to (4.1), one has

V̇ (t) = −x(t)T L(Di)x(t), (4.3)

where i ∈ {1, . . . ,m}; in fact, (4.3) can be written as a differential inclusion

V̇ (t) ∈ {x(t)T L(D)x(t) |D ∈ {D1, . . . ,Dn}}.
However, as the digraphs are strongly connected, the set

Fi = {x ∈ Rn |xT (L(Di) + L(Di)T)x = 0}
is independent of the index i as it ranges over the index set {1, . . . ,m}. We
have thus obtained the following fact.

LaSalle’s invariance principle guarantees that the agreement protocol con-
verges to the agreement subspace as the underlying network is switching
among a set of strongly connected digraphs.

4.1.2 Agreement over Digraphs

As we pointed out in Chapter 3, when a digraph contains a rooted out-
branching, the agreement dynamics over the digraph (3.4) converges to the
agreement subspace. In this section, we explore how this fact can be veri-
fied via a suitable Lyapunov function. In order to do this, we will, for ease
of presentation, consider the behavior of the agreement protocol at certain
time intervals, namely, by letting z(k) = x(kδ) and considering

z(k + 1) = e−δL(D)z(k), k = 0, 1, . . . (4.4)

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 75

This sampled-data view of the protocol was used when we explored the
connection between the agreement protocol and Markov chains in Chapter
3. In fact, as we noted in Chapter 3, for any δ > 0, the matrix exponential
e−δL(D) is a stochastic matrix. Moreover, the matrix exponential e−δL(D),
viewed as a non-negative matrix, has a particular pattern for its zero entries.

Lemma 4.1. Consider the digraph D and let δ > 0. Then

[e−δL(D)]ij > 0

if and only if i = j or there is a directed path from j to i in D.
Proof. First we notice that

e−δL(D) = e−δµeδ(µI−L(D))

for any µ > 0. Hence, the pattern of zeros in e−L(D) and eµI−L(D) are
identical. Let us denote the non-negative matrix µI − L(D) when

µ > max
i

[L(D)]ii,

by L+. The matrix L+ is non-negative and [L+]ij > 0 if and only if i = j
or there is a directed edge from j to i in D. We also note that [L2

+]ij > 0 if
and only if there is a directed path of length two from j to i in D as

[L2
+]ij =

∑
k

[L+]ik[L+]kj. (4.5)

In fact, for any positive integer p, [Lp
+]ij > 0 if there is a directed path of

length p from j to i in D. The proof of the proposition now follows by
viewing the matrix exponential of L+ in terms of its power series

∞∑
j=0

(δ)j

j!
Lj

+. (4.6)

From (4.6) we conclude that the ijth entry of eL+ , and thus of e−δL(D), is
positive if and only if a directed path–of any length–exists from j to i in D.

Corollary 4.2. The digraph D contains a rooted out-branching if and only
if, for any δ > 0, at least of one of the columns of e−δL(D) is positive.

Proof. When D contains a rooted out-branching, there exists a vertex in D
that can reach any other vertex in the digraph via a directed path. Thus, by
Lemma 4.1, there exists an index j such that [e−δL(D)]ij is positive for all i.

76 CHAPTER 4

Let us now explore the ramifications of the above corollary in the con-
text of the agreement protocol over a digraph that contains a rooted out-
branching. Consider the function

V (z) = max
i

zi − min
j

zj . (4.7)

Since the digraph contains a rooted out-branching, while V (z) > 0, one has

V (z(k + 1)) < V (z(k)), for k = 1, 2, . . .

To see this, note that (4.4) dictates that at the end of every δ time interval,
every vertex essentially updates its state by taking a convex combination
of its own state and the states of other vertices in the network. Since one
column of the stochastic matrix e−δL(D) has positive elements, the states of
the nodes with the maximum and minimum entries are updated in such a
way that their difference decreases as long as these states are not all equal.
Hence, (4.7) is a strong (discrete time) Lyapunov function (see Appendix
A.3) for the agreement protocol and (4.4) converges to the state where the
Lyapunov function (4.7) vanishes.2 In the meantime, the set where V (z) =
0 coincides with the agreement subspace.

4.2 AGREEMENT OVER SWITCHING DIGRAPHS

The extension of the Lyapunov argument for examining the agreement pro-
tocol over switching digraphs is now immediate. Suppose that the digraph
switches, possibly at the end of every δ interval, in such a way that the union
of the digraphs over some fixed interval of length T = mδ, with m a pos-
itive integer, contains a rooted out-branching. It follows from Lemma 4.1
that, for some T > 0,

[e−TL(∪m
k=1Dk)]ij > 0

for some j and all i. This also implies that[
m∏

k=1

e−δL(Dk)

]
ij

> 0

for some j and all i. To see this, note that, for example, for an arbitrary
index p,

[e−δL(Dp)e−δL(Dp+1)]ij =
∑

r

[e−δL(Dp)]ir [e−δL(Dp+1)]rj ,

2In this setting, the Lyapunov approach is invoked for a discrete time system.

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 77

which is positive if, for some r, there exist a directed path from j to r
in Dp+1 and a directed path from r to i in Dp. The aforementioned Lya-
punov argument, monitoring the Lyapunov function (4.7) in relation to the
sequence z(k), generated by

z(k + 1) = e−δL(Dk)z(k), k = 0, 1, . . . , (4.8)

now implies that the agreement protocol evolving over a sequence of switch-
ing digraphs whose union over a fixed time interval T contains a rooted
out-branching converges to the agreement subspace.3

4.3 EDGE AGREEMENT

LaSalle’s invariance principle is the workhorse of convergence analysis for
the agreement protocol and its various extensions. However for pedagogical
and technical reasons, it is often desirable to resort to a Lyapunov-type ar-
gument, assessing the stability aspects of a dynamic system with respect to
the origin. A convenient construction that allows for such an analysis is the
edge Laplacian, discussed in §2.3.4, and the corresponding edge agreement.

4.3.1 From LaSalle to Lyapunov

Let us consider the system states as defined over the edges–rather than on
the nodes–of the graph G in the agreement protocol (3.2). It is assumed
that G has n nodes and m edges. This edge perspective is facilitated by the
transformation

xe(t) = D(G)T x(t), (4.9)

where, as before, D(G) is the incidence matrix of G (given an arbitrary ori-
entation) and xe(t) ∈ Rm represents the relative internode, or edge, states.
Differentiating (4.9) leads to

ẋe(t) = −Le(G)xe(t); (4.10)

we refer to (4.10) as the edge agreement protocol. In lieu of the vertex-to-
edge transformation induced by the incidence matrix of G, it follows that
“agreement” in the vertex states is equivalent to having xe(t) = 0 when G

3Note that the sampling interval δ is an arbitrary positive real number.

78 CHAPTER 4

is connected. As a result, in the edge setting, the edge disagreement,

δe(t) = ‖xe(t)‖,

rather than being the distance to a subspace, is the distance to the origin; in
fact,4

‖δe(t)‖ = ‖xe(t)‖ ≤ ‖D(G)‖‖δv(t)‖, (4.11)

where δv is the disagreement associated with the vertex states in a connected
graph, defined as

δv(t) = dist (x(t),A).

As we already know from Chapter 3, the agreement protocol over a con-
nected graph steers the node states toward the agreement subspace. Conse-
quently, the edge agreement protocol (4.10) over a connected graph steers
the edge states to the origin. In the edge agreement the evolution of an edge
state depends on its current state and the states of its adjacent edges, that is,
those that share a vertex with that edge.

4.3.2 Role of Cycles in the Edge Agreement

Cycles in the graph play an important role in the agreement protocol. Recall
from Chapter 2 that the null space of the edge Laplacian characterizes the
cycle space of the underlying graph. In the meantime, in the agreement
protocol, the agreement state is reached when the underlying state trajectory
converges to the null space of L(G) for a connected graph G. For connected
graphs, the same observation is valid when the system dynamics is specified
by the edge Laplacian (4.10): when xe(t) ∈ N (Le(G)) the agreement state
has been reached.

In this section our standing assumption is the connectedness of the graph
under consideration. Using an appropriate permutation of the edge indices,
we can partition the incidence matrix of G as

D(G) = [D(Gτ) D(Gc)], (4.12)

where Gτ represents a given spanning tree of G, and Gc represents the re-
maining edges not in the tree, that is, the cycle edges; see Figure 4.1. Note
that in general Gc does not represent a connected graph. The partitioning
of the incidence matrix induces a corresponding partitioning on the graph

4Using the matrix induced 2 norm.

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 79

1 2

3

4

1

2

3 4

5
1 2

3

2

3 4

5
1 2

4

1

3 4

= +

Figure 4.1: A graph can be represented (not necessarily in a unique way) as
a tree and edges that complete its cycles.

Laplacian and its edge version as

L(G)= [D(Gτ) D(Gc)] [D(Gτ)D(Gc)]T

= D(Gτ)D(Gτ)T + D(Gc)D(Gc)T

= L(Gτ) + L(Gc) (4.13)

and

Le(G)= [D(Gτ) D(Gc)]T [D(Gτ) D(Gc)]

=
[

D(Gτ)T D(Gτ) D(Gτ)T D(Gc)
D(Gc)T D(Gτ) D(Gc)T D(Gc)

]
=
[

Le(Gτ) D(Gτ)T D(Gc)
D(Gc)T D(Gτ) Le(Gc)

]
. (4.14)

This tree-cycle partitioning of the edge Laplacian as in (4.14), in turn,
allows us to make the following observation. In the context of the edge
agreement (4.10), the state of the edges corresponding to a spanning tree
subgraph Gτ evolves according to

ẋτ (t) = −Le(Gτ)xτ (t) − D(Gτ)T D(Gc)xc(t), (4.15)

whereas the dynamics of the cycle edges evolve according to

ẋc(t) = −Lc(Gc)xc(t) − D(Gc)T D(Gτ)xτ (t). (4.16)

Thereby, the spanning tree and cycle edges act as forcing mechanisms for
the mutual evolution of their respective states.

4.3.3 Minimal Edge Agreement

In the previous section we pointed out a connection between the cycles of
a graph and the algebraic structure of the corresponding edge Laplacian.
This observation can be used to derive a reduced order representation of the

80 CHAPTER 4

edge agreement in terms of the corresponding dynamics on the spanning
tree subgraph. In this avenue, let us partition the edge state vector as in

xe(t) = [xT
τ (t) xT

c (t)]T , (4.17)

where xτ (t) is the edge state of the spanning tree subgraph Gτ and xc(t)
denotes the state of the remaining edge states.

Theorem 4.3. Consider a graph G with cycles, and a spanning tree sub-
graph Gτ , with the corresponding edge Laplacian partitioned as (4.14).
Then there exists a matrix R such that

Le(G) = RT Le(Gτ)R. (4.18)

Proof. As the graph G has cycles, the columns of D(Gc) are linearly de-
pendent on the columns of D(Gτ). This can be expressed in terms of the
existence of a matrix T such that

D(Gτ)T = D(Gc). (4.19)

Since D(Gτ) has full column rank, its pseudo-inverse exists and we have

T = (D(Gτ)T D(Gτ))−1D(Gτ)T D(Gc). (4.20)

Therefore, the incidence matrix of G can be written as

D(G) = [D(Gτ) D(Gτ)T]. (4.21)

We can thereby find the edge Laplacian for G in terms of the matrices D(Gτ)
and T (4.20) as

Le(G) =
[

Le(Gτ) Le(Gτ)T
T T Le(Gτ) T T Le(Gτ)T

]
=
[

I
T T

]
Le(Gτ)

[
I T

]
.

The matrix R in the statement of the theorem can now be defined via

R =
[

I T
]
. (4.22)

Theorem 4.3 will, through the following proposition, be used to highlight
the supporting role that cycles of the graph play in the convergence of the
agreement protocol. In fact, all cycle states can be reconstructed from the
spanning tree states through the linear relationship derived in (4.20). This is
made explicit by the following proposition.

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 81

Proposition 4.4. Consider a graph G with incidence matrix partitioned as
(4.12). Analogously, partition the edge state vector as (4.17). Then the edge
agreement (4.10) is equivalent to the descriptor system

RT ẋτ (t) = −RT Le(Gτ)RRTxτ (t), (4.23)

where R is as defined in (4.22). Furthermore, the reduced order system
described by

ẋτ (t) = −Le(Gτ)RRT xτ (t) (4.24)

captures the behavior of the edge agreement protocol (4.10). In fact, the
cycle edge states can be reconstructed by using the matrix T (4.20) via

xc(t) = T T xτ (t). (4.25)

Proof. Using (4.13) and (4.21), the agreement protocol can be written as

ẋ(t) = (−L(Gτ) + D(Gτ)TT T D(Gτ)T)x(t). (4.26)

The edge agreement protocol can then be derived by recalling that

xe(t) = D(G)T x(t) =
[

D(Gτ)T

T T D(Gτ)T

]
x(t) = RT D(Gτ)T x(t).

Left-multiplication of (4.26) by RT D(Gτ)T leads to

RT ẋτ (t) = −RT
(
D(Gτ)T D(Gτ) + D(Gτ)T D(Gτ)TT T

)
xτ (t),

which is the desired result (4.23). The reduced order representation follows
directly from the structure of the matrix R.

Theorem 4.4 can be used, in conjunction with (4.15) - (4.16), to show that
the cycle states serve as an internal feedback on the dynamics of edges of
the spanning tree subgraph of G; this is depicted in Figure 4.2.

4.4 BEYOND LINEARITY

As we have seen so far, the agreement protocol introduced in (3.2) can be
extended and examined in several directions, including imposing an orien-
tation on the underlying interaction rule, or allowing the underlying net-
work to switch during the protocol’s evolution. However, the overarching
assumption in our analysis up to now has been the linearity of the inter-
action rule. In this section, we explore another venue–closely related to

82 CHAPTER 4

ẋτ = −Le(Gτ)xτ + u

D(Gτ)
TD(Gc)

xc

u xτ

T T

−

Figure 4.2: Edge dynamics as a feedback structure between spanning tree
edges and cycle edges

Lyapunov theory–for analyzing situations when nonlinear elements are in-
cluded in the general setup of the protocol, defined over connected graphs.
This machinery is based on the passivity approach to nonlinear system anal-
ysis and design in combination with the edge Laplacian formalism of the
previous section. We refer the reader to Appendix A.3 for more on passivity
theory; however, we here review the basic setup.

Consider the nonlinear system

ż(t) = f(z(t), u(t)), y(t) = z(t), (4.27)

where f is locally Lipschitz (see Appendix A.1) and f(0, 0) = 0. Then
(4.27) is called passive if there exists a continuously differentiable, positive
semidefinite function V , referred to as the storage function, such that

u(t)T y(t) ≥ V̇ (t) (4.28)

for all t; if V̇ in (4.28) can be replaced by V̇ + ψ(z) for some positive
definite function ψ, then we call the system strictly passive; in our case,
since the output of the system is its state, (4.27) could also be referred to as
output strictly passive. A storage function is called radially unbounded if
V (x) → ∞ whenever ‖x‖ → ∞.

The following theorem is one of the key results in passivity theory.

Theorem 4.5. Suppose that (4.27) is output strictly passive with a radi-
ally unbounded storage function. Then the origin is globally asymptotically
stable.

To demonstrate the utility of this “passivity theorem” in the context of
the agreement protocol, consider the interconnection of Figure 4.3, with an
integrator in the forward path and the edge Laplacian of a spanning tree, in

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 83

the feedback path, encoding the edge agreement (4.10). Note that z in this
case denotes the vector of edge states xe (4.9). Then, with respect to the
quadratic storage function V (z(t)) = (1/2)z(t)T z(t), and in reference to
Figure 4.3, one has

u(t)T y(t)= u(t)T z(t)
=−z(t)T Le(Gτ)z(t) + u(t)T z(t) + z(t)T Le(Gτ)z(t)
= V̇ (z(t)) + z(t)T Le(Gτ)z(t),

implying that the system is strictly (output) passive with a storage function
that is radially unbounded. This observation, in turn, makes the convergence
analysis for the edge agreement over a spanning tree fall under the domain
of Theorem 4.5. Hence, z(t) → 0 as t → ∞, and convergence to the
agreement subspace of the “node” states follows.

The connection between the agreement protocol and Theorem 4.5 can be
used to extend the basic setup of the agreement protocol in various direc-
tions, one of which is the following.

Corollary 4.6. Suppose that for a connected network of interconnected
agents, the edge states evolve according to ẋe = −f(G, xe), where f :
Gn ×Rm → Rm (withGn being the set of all graphs on n nodes) satisfies

xT
e f(G, xe) > 0

for all xe �= 0, when G is connected. Then the corresponding node states
converge to the agreement subspace. ∫

Le(Gτ)

żu y = z

−

Figure 4.3: Edge agreement over a spanning tree as an output strictly passive
system

It is now tempting to extend the agreement protocol to fit one of the many
passivity-type results in nonlinear systems theory. One path in this direction
would be to base the analysis and design on the following result.

Theorem 4.7. Consider the feedback connection shown in Figure 4.4, where
the time-invariant passive system G1 : ż(t) = f(z(t), u1(t)), y1(t) = z(t)

84 CHAPTER 4

−
u u1 G1

y1

u2G2
y2

Figure 4.4: Feedback configuration for Theorem 4.7

has a storage function V and the time-invariant memoryless function G2

is such that uT
2 y2 ≥ uT

2 φ(u2) for some function φ. Then the origin of the
closed loop system (with u = 0) is asymptotically stable if vT φ(v) > 0 for
all v �= 0.

To illustrate the ramification of Theorem 4.7, suppose that following the
integrator block in Figure 4.3, there exists a nonlinear operator ψ such that
for some positive definite functional V (z), one has ψ(z) = ∇V (z). Then

V̇ (t) = ∇V T ż(t) = ψ(z)T ż(t), (4.29)

implying that the forward path of the feedback configuration shown in Fig-
ure 4.5(a) is passive with a storage function V and the function φ(v) in
Theorem 4.7 can be chosen as λ2(G)v for a connected graph. Hence, the
asymptotic stability of origin with respect to the edge states xe(t) can be
implied by invoking Theorem 4.7. The more general case of this result for
a connected network is also immediate using (4.18) stating that

Le(G) = RT Le(Gτ)R,

where G is an arbitrary connected graph. This relationship suggests the loop
transformation depicted in Figure 4.5, keeping in mind that passivity of the
forward path does not change under post- and premultiplication by matrices
RT and R; Theorem 4.7 can now be invoked under this more general setting.

An example that demonstrates the utility of the above observations for
multiagent systems pertains to the Kuramoto model of n coupled oscillators
interacting over the network G as

θ̇i(t) = k
∑

j∈N(i)

sin(θj(t) − θi(t)), i = 1, 2, . . . , n. (4.30)

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 85∫
Le(G)

z

−
ψ

(a)∫
Le(Gτ)

z

−
ψRT R

(b)

Figure 4.5: Loop transformation between feedback connection with edge
Laplacian over arbitrary connected graphs (a) to one over spanning trees (b)

In (4.30), the constant k denotes the coupling strength between the oscilla-
tors, which for the purpose of this section is assumed to be positive. The
nonlinear interaction rule (4.30) can compactly be represented as

θ̇(t) = −kD(G) sin(D(G)T θ(t)), (4.31)

where θ(t) = [θ1(t), θ2(t), . . . , θn(t)]T , and we have adopted the conven-
tion that when w = [w1, . . . , wn]T ∈ Rn, then

sin(w) = [sin(w1), . . . , sin(wn)]T .

The edge perspective of §4.3 now leads to

D(G)T θ̇(t) = −kLe(G) sin(D(G)T θ(t)); (4.32)

hence the Kuramoto model (4.30) can be represented as

ż(t) = −kLe(G) sin(z(t)), (4.33)

where z(t) = D(G)T θ(t). In order to mold the stability analysis of the
Kuramoto model (4.30) in the context of passivity theory, we write

ż(t) = −kRTLe(Gτ)R sin(z(t)), (4.34)

where Le(Gτ) is the edge Laplacian of a spanning tree of G, and hence a pos-
itive definite matrix, or when viewed as a dynamic system, a strictly passive

86 CHAPTER 4

element. Now let V (z(t)) = 1T (1−cos(z(t))) be a candidate storage func-
tion for the Kuramoto model (4.34). In this case, V (z) > 0 for all nonzero
z (mod 2π), V (0) = 0 (mod 2π), and ψ(z) = sin(z), in reference to the
identity (4.29) and Fig. 4.5(b). Using the passivity machinery, combined
with the edge Laplacian formalism, we thus conclude that for the Kuramoto
model over a connected graph, the synchronization state is asymptotically
stable.5

SUMMARY

In this chapter, we extended the agreement protocol to the case when the
network topology undergoes structural changes. What this means is that
edges may appear and disappear over time. The key observation is the use
of LaSalle’s invariance principle in conjunction with the notion of “union”
of graphs, or digraphs, over a finite time interval that need to be connected
(for graphs) or have a rooted out-branching (for digraphs) to ensure the con-
vergence of the protocol. We then explored the edge Laplacian, which pro-
vides the means for viewing the agreement subspace as the origin of an
alternate coordinate system. The edge Laplacian also facilitates the exten-
sion of the linear agreement protocol to the interconnection of nonlinear
elements where certain passivity properties are ensured in the system by the
presence of a connected network.

NOTES AND REFERENCES

The use of common Lyapunov functions for studying the agreement pro-
tocol over switching networks appeared in the works of Jadbabaie, Lin,
and Morse [124] and Olfati-Saber and Murray [182]. The general case
of convergence, in the discrete-time case, for the iteration x(k + 1) =
W (k)x(k) when W (k) is stochastic matrix at each time index k, has long
been examined in theory of Markov chains under the heading of inhomoge-
neous products of non-negative matrices [213],[249]. Convergence anal-
ysis of such iterations when they are induced by an underlying switch-
ing network was studied by Bertsekas and Tsitsiklis in the context of dis-
tributed computation [22] and by Jadbabaie, Lin, and Morse [124], who
were motivated by Viscek’s model of collective motion of self-driven par-
ticles [238], as well as by Tanner, Jadbabaie, and Pappas [228] and Lin,
Broucke, and Francis [147]. Extension to the nonlinear setting was pio-
neered by Moreau [162]; see also Slotine and Wang [219]. The study of

5By synchronization we refer to the case when θ1 = θ2 = · · · = θn mod 2π.

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 87

multiagent systems using passivity theory has been pursued by Arcak [10].
Theorems 4.5 and 4.7 are found in Chapter 6 of Khalil [131]. A nice exten-
sion of the agreement protocol examined under quantization is found in [43].

SUGGESTED READING

We suggest the work of Moreau [162] and Cortés [53] for examining the
agreement protocol under a more general setup over undirected and directed
time-varying interconnection topologies. For passivity theory we recom-
mend the books by Khalil [131] and Brogliato, Lozano, Maschke, and Ege-
land [35].

EXERCISES

Exercise 4.1. What is the relation between the eigenvalues of A and the
eigenvalues of its powers? Conclude that if limk→∞ Ak �= ∞, then all
eigenvalues of A belong to the unit circle in the complex plane. What
can you say about the eigenvalues of the matrix e−L(D) when D contains
a rooted out-branching?

Exercise 4.2. Examine the argument following Corollary 4.2. Provide an
analysis for why the value of the Lyapunov function V (x) = maxi xi −
mini xi has to decrease at every iteration if x does not belong to the agree-
ment subspace, that is, when V (x) > 0. Plot V (x) for a representative
digraph on five nodes containing a rooted out-branching running the agree-
ment protocol.

Exercise 4.3. Consider the system

θ̇i(t) = ωi +
∑

j∈N(i)

sin(θj(t) − θi(t)), for i = 1, 2, . . . , n, (4.35)

which resembles the agreement protocol with the linear term xj − xi re-
placed by the nonlinear term sin(xj − xi). For ωi = 0, simulate (4.35) for
n = 5 and various connected graphs on five nodes. Do the trajectories of
(4.35) always converge for any initialization? How about for ωi �= 0? (This
is a “simulation-inspired question” so it is okay to conjecture!)

Exercise 4.4. Show that the set [−π/2, π/2] is positively invariant for the
edge representation of the Kuramoto model (4.33) when k ≥ 0, that is, when
z(0) ∈ [−π/2, π/2], z(t) ∈ [−π/2, π/2] for all t ≥ 0.

88 CHAPTER 4

Exercise 4.5. Provide an example for an agreement protocol on a digraph
that always converges to the agreement subspace (from arbitrary initializa-
tion), yet does not admit a quadratic Lyapunov function of the form 1

2xT x,
that testifies to its asymptotic stability with respect to the agreement sub-
space.

Exercise 4.6. Consider a matrix A = [aij] ∈ Rn×n with entries that are
non-negative. Associate with the matrix A, the digraph D as follows. Let
V (D) be {1, 2, . . . , n} and ji ∈ E(D) if and only if aij > 0. Show that
if the digraph associated with the matrix A is strongly connected, then for
some positive integer m,

∑
m Am has all positive entries.

Exercise 4.7. Let λ1, . . . , λn be the ordered eigenvalues of the graph Lapla-
cian associated with an undirected graph. We have seen that the second
eigenvalue λ2 is important both as a measure of the robustness in the graph,
and as a measure of how fast the protocol converges. Given that our job is
to build up a communication network by incrementally adding new edges
(communication channels) between nodes, it makes sense to try and make
λ2 as large as possible.

Write a program that iteratively adds edges to a graph (starting with a
connected graph) in such a way that at each step, the edge (not necessarily
unique) is added that maximizes λ2 of the graph Laplacian associated with
the new graph. In other words, implement the following algorithm:

Step 0: Given G0 a spanning tree on n nodes. Set k=0
Step 1: Add a single edge to produce Gnew from Gk such that

lambda2(Gnew) is maximized. Set k=k+1, Gk=Gnew
Repeat Step 1 until Gk=Kn

for n = 10, 20, and 50. Did anything surprising happen?

Exercise 4.8. Consider n agents placed on the line at time t, with agent
1 at position 2∆, agent 2 at position ∆, and the remaining agents at the ori-
gin. An edge between agents exists if and only if |xi − xj | ≤ ∆. Compute
where the agents will be at time t + δt, for some small δt, under the agree-
ment protocol. In particular, for what values of n is the graph connected at
time t + δt?

Exercise 4.9. Does the convergence of the edge states to the origin in an
arbitrary graph imply that the node states converge to the agreement set?

Exercise 4.10. Consider the scenario where the relative states in the agree-

THE AGREEMENT PROTOCOL: PART II LYAPUNOV AND LASALLE 89

ment protocol over a tree are corrupted by a zero mean Gaussian noise with
identity covariance. How can (4.24) be modified to reflect this? The H2

norm of the system ẋ(t) = Ax(t) + Bw(t) can be calculated by finding
(traceX)1/2 where AX + XAT + BBT = 0; this norm measures how
a Gaussian noise w is amplified in the system shown in the figure below.
Show that the H2 norm of the noisy agreement problem over a tree is pro-
portional to the number of edges in the graph. How about the case when the
underlying graph is a cycle?

w x
ẋ(t) = Ax(t) + Bw(t)

Chapter Five

Probabilistic Analysis of Networks and Protocols

“Always be a little improbable.”
— Oscar Wilde

In this chapter we show the extent by which the previously described tools
and techniques for reaching agreement on graphs can be adapted to situ-
ations where the network contains stochastic elements. In particular, we
will discuss the case of random graphs, in which the existence of an edge
between a pair of vertices at any given time is driven by a Bernoulli random
process. Such models are useful, for instance, for modeling intermittently
faulty communication channels. A related topic, also included in this chap-
ter, is how to reach agreement in the presence of noise. We conclude the
chapter with a brief overview of other probabilistic models of networks.

Allowing the underlying network in the agreement protocol to switch
among a finite number of topologies can be by design or necessity. In the
latter case, the analysis that allows us to ascertain that the protocol retains
its convergence properties can be categorized as robustness analysis. In this
chapter, we first consider yet another facet associated with the robustness of
the agreement protocol, this time, by allowing random failures in the edges
of the network.

5.1 RANDOM GRAPHS

In the Erdős-Rényi model of random graphs on n vertices, the existence of
an edge between a pair of vertices in the set V = {1, . . . , n}, is determined
randomly, independent of other edges, with probability p ∈ (0, 1]. (The
case p = 0 corresponds to the static, empty graph.) The sample space of all
such random graphs will be denoted by G(n, p). Note that the value of edge
probability p is assumed to be same for all potential edges of G ∈ G(n, p);
relaxing this assumption however is possible. This edge probability can be
fixed, or in more interesting scenarios, a function of the order of the graph;
hence the notation p(n) is often used to specify the edge probability.

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 91

In the random graph model, all graph parameters are interpreted prob-
abilistically. Thus one considers the “expected” number of edges in the
random graph G ∈ G(n, p), as the number of edges of G ∈ G(n, p) is a
random variable. To further clarify this point, let us consider the probability
that G ∈ G(n, p) has exactly m edges. Since there are

(n
2

)
potential edges

among n vertices, the probability that we have any of the m potential edges
is

pm(1 − p)(
n
2)−m;

however there are
(n
m

)
possible choices for those m edges and hence, the

probability of having exactly m edges in G ∈ G(n, p) is(
n

m

)
pm(1 − p)(

n
2)−m.

Moreover, the expected number of edges in G ∈ G(n, p) is p
(n
2

)
: this fol-

lows from the fact that if we let Xij = 1 when there is an edge between
vertices i and j and Xij = 0 if otherwise, then the expected value for the
number of edges in the random graph is

E

⎧⎨⎩ ∑
ij∈E(G)

Xij

⎫⎬⎭ =
∑
ij

E {Xij} =
∑
ij

p = p

(
n

2

)
.

The above observation implies that the size of a random graph in G(n, p)
has a binomial distribution: it is the sum of Bernoulli random variables, each
taking on values 0 and 1 with probabilities q = 1 − p and p, respectively.
This simple observation proves to be useful in showing other results for a
number of graph parameters, as the next proposition states.

Proposition 5.1. The expected number of vertices of degree k for G ∈
G(n, p) is

n

(
n − 1

k

)
pk qn−1−k.

Proof. The probability that a vertex in G ∈ G(n, p) has degree k is pkqn−1−k.
There are

(n−1
k

)
choices for edges to be incident on this vertex; the statement

of the proposition now follows by linearity of the expectation operator.

Another probabilistic notion often employed in the theory of random
graphs is that of almost all graphs. In this venue, one considers a particular

92 CHAPTER 5

graph property P (for example, connectedness) and examines the asymp-
totic behavior of

Pr{G ∈ G(n, p) has the property P}

as n → ∞. If this probability tends to 1, then we say that almost all graphs
inG(n, p) have property P.

One powerful way to show that a property holds for almost all graphs is to
find the expected value or the variance of a random variable associated with
G(n, p) and then invoke one of the concentration inequalities in probability.
We demonstrate this via an example. First recall that the Markov inequality
states that if X is a random variable that only takes non-negative values,
then

Pr {X ≥ t } ≤ E{X}
t

.

In particular, if X is integer-valued, then E{X} → 0 as n → ∞ implies
that

Pr{X = 0} → 1 as n → ∞.

Using the Markov inequality, we can state the following observation.

Theorem 5.2. If p is constant, then almost all graphs in G(n, p) are con-
nected and have diameter 2.

Proof. Let Xij be a random variable on G(n, p) such that

Xij =
{

1 if vi and vj have no common neighbors,
0 otherwise. (5.1)

Then Pr{Xij = 1} = (1−p2)n−2 since if two vertices do share a neighbor,
none of the other n − 2 vertices do. Letting X =

∑
ij Xij , where indices i

and j run over all distinct pairs of vertices, we obtain

E {X} =
(

n

2

)
(1 − p2)n−2,

which, when p is fixed, approaches zero as n → ∞. By the Markov inequal-
ity, it now follows that for a fixed p, the probability that a pair of vertices
do not have a common neighbor approaches zero as n → ∞. Hence, the
probability that the graph has diameter 2, and hence is connected, goes to 1
as n → ∞.

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 93

Results such as Theorem 5.2 are abundant in the theory of random graphs–
often quite elegant and surprising. The crucial step in the proof of many such
results is the “right” choice of the random variable and the application of the
“right” concentration inequality (such as the Markov inequality). For exam-
ple, the expected value of the vertex degree in a random graph is p(n − 1);
using the Chernoff bound (see Appendix A.4) one can show that

| d(vi) − pn | ≤ 2(
√

pn log n + log n),

which in our asymptotic notation can be written as

| d(vi) −E {d(v)} | = O(
√

n log n)

for almost all graphs. We will use this asymptotic bound in §5.2.2.

5.2 AGREEMENT OVER RANDOM NETWORKS

We now assume that the underlying network in the agreement protocol (3.2)
is in fact a random graph, when sampled at particular time intervals. Specif-
ically, we assume that during a given time interval, there is a probability
q ∈ [0, 1) of loosing the information-exchange link between a pair of agents,
that is, an edge between a pair of vertices exists with probability p ∈ (0, 1],
where p = 1− q. Moreover, as the random model requires, we consider the
situation where the failure probability on one edge is independent of that on
others.

Having embedded a random network in the dynamic system (3.2), analo-
gous to the switching networks of §4.1.2, we proceed to consider its evolu-
tion in a sampled-data setting. Thus, we consider an arbitrary sampling of
the time axis at intervals δ > 0, and monitor the trajectory of z(k) = x(kδ)
expressed by

z(k + 1) = e−δLkz(k), k = 0, 1, . . . , (5.2)

where Lk is the Laplacian matrix of the random graph as realized at time
kδ. We denote by L(n, p) as the set of Laplacian matrices associated with
random graphs on n nodes with probability of link failures 1 − p. Thereby,
in (5.2), for each k, one has Lk ∈ L(n, p). We will assume that during the
time interval [kδ, (k + 1)δ), the dynamics of the system is governed by Lk,
that is, in between the sample times, the graph does not change.

94 CHAPTER 5

Let us start gathering the ingredients that we will need for applying the
stochastic version of LaSalle’s invariance principle to the agreement proto-
col over random graphs.

5.2.1 Agreement via the Stochastic Version of LaSalle’s Invariance Principle

We start this section with an observation.

Corollary 5.3. Suppose that for every realization L ∈ L(n, p) one has

zT (I − e−δL) z = 0; (5.3)

then z ∈ A, where A is defined in (3.5).
Proof. Note that I − e−δL is positive semidefinite; hence (5.3) is equivalent
to (I − e−δL)z = 0. The proof of the corollary is now a direct consequence
of the Perron-Frobenius theorem (see Appendix), as one can choose a con-
nected graph with the Laplacian L ∈ L(n, p) such that the corresponding
e−δL is positive. In this case, the vector z satisfying (5.3) has to be in the
span of the eigenvector of e−δL corresponding to the unit eigenvalue and,
thus in A.

For the proof of convergence to the agreement set A for the trajectories
governed by (5.2), one can invoke a variety of techniques ranging from the
ergodic behavior of positive matrices (or non-negative matrices in the case
of digraphs) to those based on Lyapunov techniques. Our exposition, in line
with our aspiration for consistency and reinforcing our bulldozer analogy at
the beginning of Chapter 4, will be based on the stochastic version of the
Lyapunov technique.

First, we need to recall some definitions for convergence in a probabilistic
setting which will be used shortly; for the distinction between various forms
of convergence in the probabilistic setting, we refer the reader to the Ap-
pendix; see also Notes and References to this chapter. The following mode
of convergence is often considered the strongest type of convergence for a
random sequence.

Definition 5.4. A random sequence {z(k)} inRn converges to z∗ with prob-
ability 1 (w.p.1) if, for every ε > 0,

Pr

{
sup
k≥N

‖z(k) − z∗‖ ≥ ε

}
→ 0 as N → ∞.

Similarly, for A ⊆ Rn, we write

{z(k)} → A w.p.1

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 95

if, for every ε > 0,

Pr

{
sup
k≥N

dist (z(k),A) ≥ ε

}
→ 0 as N → ∞,

where dist (z,A) = infy∈A ‖y − z‖.

In view of our observation in (3.9),

dist (z(k),A) =
∥∥∥∥z(k) − 1T z(0)

1T1
1
∥∥∥∥

=
(

z(k)T z(k) − (1T zo)2

1T1

)1/2

=
(

1
n

z(k)T L̂z(k)
)1/2

,

where L̂ = L(Kn) is the graph Laplacian for the complete graph Kn. Note
that

L̂ = nI − 11T .

The main result of this section is as follows.

Proposition 5.5. The trajectory of the random dynamical system (5.2) with
matrix L ∈ L(n, p) converges to the agreement set A (3.5) w.p.1.

Proof. Consider the function

V (z(k)) =
1
n

z(k)T L̂z(k) =
1
n

∑
i�=j

‖zi(k) − zj(k)‖2;

then one has

V (z(k)) = z(k)T z(k) − c2

n
when 1T z(k) = c.

Consider the evolution of the quantity E [V (z(k + 1)) − V (z(k)) | z(k)],
which, when restricted to the trajectories of the random dynamical system
(5.2), assumes the form

E{ z(k)T (e−2δL − I)z(k) | z(k)}.

Define E { e−2δL − I} = −C . We know that for all L ∈ L(n, p), the
spectrum of e−δL is as

e−λn(G), e−λn−1(G), . . . , e−λ2(G), 1,

96 CHAPTER 5

and the matrix C is positive semidefinite. Hence V (z(k)) is a supermartin-
gale (see Appendix A.4). Invoking the stochastic version of LaSalle’s in-
variance principle, we conclude that

E{z(k)T (e−2δL − I)z(k)} → 0 as k → ∞,

and z(k)T (E{e−2δL − I}) z(k) → 0 w.p.1. The set

I = {z | zT (E{I − e−2δL})z = 0} (5.4)

is an invariant set for the dynamical system (5.2). Moreover, we note that

E{I − e−2δL} =
g(n)∑
i=1

pi(I − e−2δLi),

where g(n) = 2(
n
2) is the cardinality of the set of graphs on n vertices and

Li is the Laplacian matrix associated with the ith graph in this set. Since
for all i = 1, . . . , g(n), the matrix I − e−2δLi is positive semidefinite and
pi > 0, one must have that for all z ∈ I and realizations L ∈ L(n, p),

zT (I − e−2δL) z = 0.

Consequently, in view of Corollary 5.3, the largest invariant set contained in
I (5.4) is nothing but the agreement subspace.

5.2.2 Rate of Convergence

Although determining the rate of convergence of the agreement protocol
over a switching network is rather involved, the convergence analysis of the
protocol over random networks benefits from a combination of stochastic
Lyapunov theory and random matrix theory. In this direction, let {ẑ(k)}k≥1

be the projection of {z(k)}k≥1 onto the subspace orthogonal to the agree-
ment subspace A. Thus, for all z(k) ∈ Rn, one has ẑ(k)T 1 = 0. Now we
monitor the behavior of the Lyapunov function in Proposition 5.5 along the
projected trajectories onto this subspace, A⊥. Of course, as before,

E{V (ẑ(k + 1)) − V (ẑ(k)) | ẑ(k)} = ẑ(k)T E {e−2δL − I} ẑ(k).

As the vector 1 is the eigenvector corresponding to the largest eigenvalue of
all matrix exponentials e−2δL with L ∈ L(n, p), one has

ẑ(k)T E{e−2δL − I} ẑ(k) ≤ (λn−1(E{e−2δL}) − 1) ẑ(k)T ẑ(k), (5.5)

where λn−1(E{e−2δL}) denotes the second largest eigenvalue of the matrix
E{e−2δL}. In particular, we note that the inequality

λn−1(E{e−2δL}) < 1

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 97

guarantees that the Lyapunov function V is a supermartingale with a bounded
decrease in its value at each time step. In order to gain some insight into the
behavior of the quantity

λn−1(E{e−2δL})
for random graphs, we note that

λn−1(E{e−2δL}) = max
‖z‖=1,z⊥1

g(n)∑
i=1

pi z
T e−2δLiz

≤E{e−2δλ2(L)}.
Let us define the quantity α(n, p, δ) = E { e−2δλ2(L)}. Since for a subset of
indices i,

0 < e−2δλ2(Li) < 1 (when G is connected),

and for the complement subset

e−2δλ2(Li) = 1 (when G is disconnected),

one has

0 < α(n, p, δ) < 1.

Thus

E{V (ẑ(k + 1)) − V (ẑ(k)) | ẑ(k)} ≤ (α(n, p, δ) − 1) ‖ẑ(k)‖2,

and for all γ > 0,

Pr { sup
k≥N

ẑ(k)T ẑ(k) ≥ γ } ≤ α(n, p, δ)N

γ
ẑ(0)T ẑ(0).

The rate of convergence of the agreement protocol on a random network is
hence dictated by the quantity α(n, p, δ) as well as by λn−1(E { e−2δL}).

5.2.3 Convergence of Random Agreement over Large-scale Networks

Let us make a few remarks on the rate of convergence of the agreement pro-
tocol over “large” random networks. As evident from the previous section,
in particular the inequality (5.5), the convergence of this protocol is dictated
by1

E { e−2δλ2(L)} and λn−1(E { e−2δL })

1The quantity λn−1(E{e−2δL}) points out the importance of the spectral properties of
an “average” graph for the convergence of the protocol on a random network.

98 CHAPTER 5

as n → ∞. In the rest of this section, we provide some insight into the
behavior of λ2(L) as a function of n and p; we denote this eigenvalue by
λ2(n, p).

As L(G) for G ∈ G(n, p) is a random matrix, it is natural to explore
the relevance of the spectral theory of random matrices in the context of
random graphs. The celebrated Wigner’s semicircle law is a central result
in this direction. In the following, we will be referring to [A]ij as aij .

Theorem 5.6. Let A be a symmetric n × n matrix where the entries aij for
i ≥ j are independent real-valued random variables with finite moments.
The entries aij with i > j are required to have an identical distribution
function; moreover, the entries aii possess the same distribution. Consider
the quantity

Wn(x) =
number of eigenvalues ≤ x

n
.

Assuming that the variance of aij is σ2, one has

lim
n→∞

Wn(2σ
√

n x) = W (x) in probability,

whereW is an absolutely continuous distribution function with density

W (x) =
{

2
π

√
1 − x2 for |x| ≤ 1,
0 for |x| > 1,

namely, a semicircular distribution.

Wigner’s semicircle law provide a limiting distribution for the location of
the eigenvalues of a random symmetric matrix. However, for our purpose,
the following ramification of the semicircle law proves to be particularly
helpful; see Notes and References for pointers to the proof of the semicircle
law.

Corollary 5.7. Let A be a symmetric n×n matrix where the entries aij for
i ≥ j are independent real-valued random variables with finite moments.
The entries aij with i > j are required to have identical distribution func-
tions; moreover the entries aii possess the same distribution. Let

λn ≥ λn−1 ≥ · · · ≥ λ1

be the ordered eigenvalues of A. Then, for any ε > 0, one has

λn−1(A) = O(n
1
2
+ε) in probability.

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 99

Using Corollary 5.7, a bound on the second smallest eigenvalue of the
graph Laplacian can be derived as follows. Recall that L(G) = ∆(G) −
A(G), where ∆(G) is the degree matrix for the graph and A(G) is its adja-
cency matrix. Thus

L(G) = (−A(G) + p(n − 1)I) + (∆(G) − p(n − 1)I),

and therefore for any ε > 0, one has2

λ2(n, p) = pn + O(n
1
2
+ε) in probability. (5.6)

The bound (5.6) can in fact be sharpened as follows: let p ∈ (0, 1] and for
any ε ∈ (0, 2), one has

lim
n→∞

Pr {pn − f+
ε (n) < λ2(n, p) < pn − f−

ε (n)} = 1, (5.7)

where

f+
ε (n) =

√
(2 + ε) p (1 − p)n log n

and

f−
ε (n) =

√
(2 − ε) p (1 − p)n log n.

We note that the inequalities in (5.7) indicate that for fixed p and large values
of n, λ2(n, p) is an increasing function of n. Moreover, one has

Pr {e−λ2(L) > e−pn+f−
ε (n)} → 1 as n → ∞.

As a direct consequence of this observation, one can state that for the agree-
ment protocol (5.2), the rate of convergence is improved, at least linearly,
for random networks of larger order when link probabilities are fixed. This
observation can also be interpreted in terms of the improved probabilistic
robustness properties of large random networks as they pertain to the agree-
ment protocol; see Figure 5.1. In fact, when the probability of edge failures
in the random graph is fixed, larger networks exhibit better convergence
rates for the agreement protocol.

2In fact, it can be shown that limn→∞(λn(A)/n) = p.

100 CHAPTER 5

0

0.2

0.4

0.6

0.8

10

20

30

40

50
0

20

40

60

80

100

Edge probability pn elements

Th
e

nu
m

be
r o

f t
im

es
 la

m
bd

a2
 >

=
8

Figure 5.1: The number of times, out of 100 trials, that the inequality
λ2(n, p) ≥ 8 holds for each values of n and p; 2 ≤ n ≤ 50, 0.1 ≤ p ≤ 0.8

5.3 AGREEMENT IN THE PRESENCE OF NOISE

In this section, we consider a slightly modified discrete version of the agree-
ment protocol where the interagent, relative information exchange is cor-
rupted by noise. Although this is topically distinct from the random graph
discussion of the previous section, it requires similar stochastic analysis
tools, justifying its inclusion in this chapter.

In particular, assuming that zi(k) denotes the state of node i at time step
k, we consider the evolution of the discrete time system

zi(k + 1) = zi(k) − γ(k)ui(k), k = 1, 2, . . . , (5.8)

where γ(k) > 0 is a time-varying step size and ui(k) is the control input or
update direction at time k for vertex i. The update direction for i is assumed
to depend on a noisy measurement of its relative state with respect to its
neighbors as

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 101

ui(k) =
∑

j∈N(i)

(zi(k) − zj(k) + ηji(k)), (5.9)

where N(i) denotes the set of neighbors of node i, and ηji(k) is the noise
on edge ij at time k. We assume that all ηij are independent, uncorrelated,
and Gaussian distributed with zero mean and variance σ2. Note that in or-
der to guarantee convergence of the protocol, it is imperative to include a
time-dependent multiplicative term such as γ(k) in (5.8), as otherwise there
would not be an asymptotic noise rejection mechanism.

The control input (5.9) can be conveniently written in terms of the Lapla-
cian and adjacency matrices of the network graph as

ui(k) =
n∑

j=1

[L(G)]ij xj(k) +
n∑

j=1

[A(G)]ji ηji(k). (5.10)

Note that the second term on the right-hand side of (5.10) is the total noise
input for vertex i at time k; it will be denoted by wi(k). Observe that for
all i and k, the wi(k) are zero mean, independent, uncorrelated Gaussian
distributed random variables. The variance of wi(k) can be computed using
the following fact.

Lemma 5.8. Let M be a positive integer-valued random variable. For in-
dependent identically distributed random variables Y1, Y2, . . ., with mean µ
and variance σ2, the mean and variance of the sum Y = Y1+Y2+· · ·+YM ,
are E{Y } = µE{M} and

var{Y } = µ2 var{M} + σ2 E{M}. (5.11)

Since all ηji are Gaussian distributed with zero mean and variance σ2, it
follows from (5.11) that for all k,

var {wi(k)} = E {|wi(k)|2} = σ2 E {d(v)}.

We note that for random graphs for example, E{d(v)} = p (n − 1). The
discrete time protocol in (5.8) can now be expressed as

z(k + 1) = z(k) − γ(k)(L(G)z(k) + w(k))
= (I − γ(k)L(G))z(k) − γ(k)w(k), (5.12)

where w(k) = [w1(k), . . . , wn(k)]T . It is apparent from (5.12) that con-
vergence of the agreement protocol is dependent on the choice of the step
size γ(k). For a fixed γ and a connected graph, however, the variance of

102 CHAPTER 5

vertex i’s state at any time cannot be less than γσ2E [d(v)] (this follows
from the fact that var [wi(k)] = σ2 E [d(v)]) and the agreement protocol
fails to converge w.p.1. It is interesting to note that for a given γ(k), a
higher average node degree implies higher variance in ui(k) and possibly
slower convergence of the protocol. This is in contrast to the noise-free
case, where a higher node degree often implies greater information sharing
and faster convergence.

One approach by which the variance of the state vector can be driven to
zero is to adopt a time-varying step size in the agreement protocol (5.12)
that satisfies the following conditions:

lim
k→∞

γ(k) = 0,
∞∑

k=1

γ(k) = ∞, and
∞∑

k=1

γ2(k) < ∞. (5.13)

Note that the second condition is necessary to allow for a sufficient num-
ber of updates for the protocol to converge. As we will show shortly, an
additional condition on γ(k)–related to the underlying graph Laplacian–is
required to ensure convergence of the agreement protocol over noisy net-
works.

5.3.1 Convergence Analysis

In this section we consider the probabilistic convergence of the agreement
protocol (5.12) in the presence of noise. One of the crucial constructs in this
venue is the notion of the pseudogradient. The pseudogradient inequality is
defined implicitly in Proposition 5.9 below (via the inequality (5.16)). First
let us consider the quadratic function

V (z(k)) =
1
2

z(k)T L(G) z(k), (5.14)

admitting the gradient ∇V (z(k)) = L(G)z(k). Note that ∇V (z(k)) is
Lipschitz continuous with a constant λn(G) > 0 for nonempty graphs; that
is,

‖L(G) z(k1) − L(G) z(k2) ‖2 ≤ λn(G) ‖ z(k1) − z(k2) ‖2 (5.15)

since the spectral norm of L(G) is equal to λn(G). We now show that the
process (5.12) is a strong pseudogradient with respect to V (z(k)) defined
above.

Proposition 5.9. For a connected graph, u(k) = L(G) z(k) + w(k) is a
strong pseudogradient of V (z(k)) (5.14), that is,

∇V (z(k))T E{u(k) | z(k)} ≥ β V (z(k)), (5.16)

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 103

if 0 < β ≤ 2λ2(G), where λ2(G) is the second smallest eigenvalue of the
graph Laplacian L(G).

Proof. Observe that

E{u(k) | z(k)} = E{L(G)z(k) + w(k) | z(k)} = L(G) z(k),

since E{w(k) | z(k)} = E{w(k)} = 0. For the inequality (5.16) to hold, it
suffices to ensure that for all z(k),

z(k)T
[
L(G)2 − β

2
L(G)

]
z(k) ≥ 0.

The last inequality certainly holds if L(G)2−(β/2)L(G) is positive semidef-
inite for some β > 0. Since the spectrum of L(G)2 is {λ2

i (G) : 1 ≤
i ≤ n}, with λi(G) being the ith smallest eigenvalue of L(G), it follows
that L(G)2 − (β/2)L(G) is positive semidefinite for β ≤ 2λ2(G). Since
λ2(G) > 0 for a connected graph, the strong pseudogradient inequality
(5.16) is satisfied for any β ∈ (0, 2λ2(G)].

We now state an observation, followed by a lemma that is essential to the
subsequent convergence analysis.

Proposition 5.10. Let G be a connected graph. Suppose that the trajectory
of (5.12) is such that, for the quadratic function (5.14), V (z(k)) → 0 w.p.1.
Then dist (z(k),A) → 0 w.p.1.

Lemma 5.11. Consider the sequence of non-negative random variables

{V (k)}k≥0 with E{V (0)} < ∞.

Let

E{V (k + 1) |V (0), . . . , V (k)} ≤ (1 − c1(k))V (k) + c2(k), (5.17)

with c1(k) and c2(k) satisfying

0 ≤ c1(k) ≤ 1, c2(k) ≥ 0,
∞∑

k=0

c2(k) < ∞,
∞∑

k=0

c1(k) = ∞

and

lim
k→∞

c2(k)
c1(k)

= 0. (5.18)

Then V (k) → 0 w.p.1.

104 CHAPTER 5

Proof. We only provide a sketch of the proof; see notes and references for
pointers to the full proof. First, one constructs the auxiliary non-negative
sequence

U(k) = V (k) +
∞∑

j=k

c2(j).

Next, using the first two conditions on c1(k) and c2(k), it can be shown
that E{U(k + 1)} ≤ U(k). Therefore, the sequence {U(k)}k≥ 0 is a non-
negative supermartingale and converges to some non-negative random vari-
able U∗ w.p.1. On the other hand, since {c2(k)}k≥ 0 is summable, it follows
that the sequence {V (k)}k≥ 0 converges to some non-negative random vari-
able V ∗ w.p.1. Using the conditions on c1(k) and c2(k), it then follows
that

E {V (k)}k≥ 0 → 0 w.p.1.

The convergence statements

V (k) → V ∗ and E{V (k)} → 0,

both w.p.1, can now be used to prove that V ∗ = 0.

We now arrive at the main result of this section.

Proposition 5.12. For a connected graph, the trajectory of the system (5.12)
converges to the agreement set A w.p.1 if the conditions in (5.13) hold and
for all k ≥ 1, γ(k) ≤ 2/λn(G).

Proof. Using the quadratic function (5.14), one has

V (z(k + 1)) =
1
2

z(k + 1)T L(G) z(k + 1)

=
1
2

(z(k) − γ(k) u(k))T L(G) (z(k) − γ(k) u(k))

=
1
2

z(k)T L(G) z(k) − γ(k) (z(k)T L(G))u(k)

+
γ(k)2

2
uT (k)L(G)u(k)

≤V (z(k)) − γ(k)∇V (z(k))T u(k)

+
γ(k)2

2
λn(G) ‖u(k)‖2, (5.19)

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 105

since

u(k)T L(G)u(k) = ‖u(k)T L(G)u(k)‖
≤‖L(G)‖ ‖u(k)‖2

= λn(L(G)) ‖u(k)‖2.

Concurrently,

E{u(k)‖2 | z(k)}=E{(L(G)z(k) + w(k))T (L(G)z(k) + w(k)) | z(k)}
= z(k)T L(G)2 z(k) + E{wT (k)w(k)}

= (z(k)T L(G))(L(G)z(k)) +
n∑

i=1

var {wi(k)}

=∇V (z(k))T E{u(k) | z(k)} + σ2
n∑

i=1

d(vi)

=∇V (z(k))T E {u(k) | z(k)} +
(
nσ2
)
d̄(G), (5.20)

where d(vi) denotes the degree of node i in the graph and

d̄(G) =
1
n

n∑
i=1

d(vi)

is the average vertex degree in G. Since the sequence {z(k)} is a Markov
process,3 we can take the conditional expectation of (5.19) with respect to
z(k) and use (5.20) to find an upper bound for

E {V (z(k + 1)) | z(k)}
as

E{V (z(k + 1)) |z(k)} ≤ V (z(k)) − γ(k)∇V (z(k))T E{u(k) | z(k)}

+
λn(G)γ(k)2

2
E{‖u(k)‖2 | z(k)}

≤V (z(k)) + c2(k)

−
(

γ(k) − λn(G)γ(k)2

2

)
∇V (z(k))T E{u(k) | z(k)},

where c2(k) is defined by

c2(k) =
nσ2 γ(k)2 λn(G) d̄(G)

2
. (5.21)

3A random process where the distribution of the process at a given time conditioned on
its previous time history is identical to its distribution conditioned only on its immediately
preceding time step.

106 CHAPTER 5

We next invoke the strong pseudogradient property (5.16) and observe that

E {V (z(k + 1)) | z(k)} ≤ (1 − βγ(k) +
βγ(k)2 λn(G)

2
)V (z(k)) + c2(k)

= (1 − c1(k))V (z(k)) + c2(k), (5.22)

where

c1(k) = β γ(k)
(

1 − γ(k) λn(G)
2

)
. (5.23)

It is now straightforward to show that when γ(k) satisfies conditions (5.13)
and

γ(k) ≤ 2/λn(G)

for all k, c1(k) and c2(k) satisfy

0 ≤ c1(k) ≤ 1, c2 ≥ 0,
∞∑

k=1

c1(k) = ∞,
∞∑

k=1

c2(k) < ∞

and

lim
k→∞

c2(k)
c1(k)

= 0.

These conditions in turn, allow us to invoke Lemma 5.11 and conclude that
V (z(k)) → 0 w.p.1. By Proposition 5.10, the statement of the proposition
now follows.

We remark that since E{w(k)} = 0 the expected value of the limiting
state is also the mean of the initial states of the vertices in the network. In
particular, for all k ≥ 0, one has

1T z(k+1) = 1T z(k)−γ(k)1T (Lz(k)+w(k)) = 1T z(k)−γ(k)1T w(k);

hence, for all k ≥ 0,

E{1T z(k + 1)} = E{1T z(k)}.

Let us emphasize that in order to guarantee the convergence of the proto-
col, the step size γ(k) needs to satisfy γ(k) ≤ 2/λn(G) (Proposition 5.12)
in addition to conditions (5.13). A function which satisfies these criteria is

γ(k) =
2

λn(G) k
, (5.24)

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 107

since
∑∞

k=1(1/k) = ∞, and
∑∞

k=1(1/k
2) = π2/6. Alternately, one can

use a switching step size of the form

γSW(k) =

{
2/λn(G) if k ≤ �λn(G)/2�,
1/k otherwise,

(5.25)

where �x� denotes the least integer upper bound for x ∈ R.

Example 5.13. To demonstrate the importance of the graph parameters on
the convergence of the agreement protocol, we consider the protocol on a
graph of one hundred nodes that has been realized as follows. We assign
each vertex a coordinate in the unit square that has been generated by a
uniform distribution and let two vertices be neighbors of each other if their
distance is less than or equal to 0.35 (this corresponds to a “random ge-
ometric graph”–more on this model in the next section). We let the noise
in the corresponding agreement protocol be a zero mean Gaussian noise
with σ2 = 0.1. The initial states for these simulations have been uniformly
randomly distributed between 180 and 220 degrees. The right panel of Fig-
ure 5.2 demonstrates that violating γ(k) ≤ 2/λn(G) for all k ≥ 1 compro-
mises the convergence properties of the protocol.

1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

0.05

0.06

k

m
ax

|x
i(

k
)
−

av
g

(x
(0

))
|

1000 2000 3000 4000 5000
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

k

m
ax

|x
i(

k
)
−

av
g(

x
(0

))
|

Figure 5.2: Performance of the agreement protocol, measured in terms of
the worst case deviation from the steady state over all nodes, on a realization
of a random geometric graph on 100 vertices; left panel: γ(k) = γsw(k)
(5.25), right panel: γ(k) = 1/k.

108 CHAPTER 5

5.4 OTHER PROBABILISTIC MODELS OF NETWORKS

In this section, we provide a brief introduction to other probabilistic models
of networks besides the Erdős-Rényi random graph model studied earlier in
this chapter.

5.4.1 Random Geometric Graphs

Another probabilistic graph structure arises when n independent and iden-
tically distributed points (that is, vertices) on the unit square [0, 1]2 are con-
sidered. In such a setting, let r be a positive real number–often referred to
as the range or radius of a vertex–and let zi denote the position of vertex i
in the plane.

A random geometric graph on [0, 1]2, denoted by G(n, r), is defined on
the vertex set V (G) = [n] and the edge set E(G) = {ij : i, j ∈ [n], i �= j},
such that ij ∈ E(G) if ‖ zi−zj ‖ ≤ r. Due to this “distance-dependent edge
existence property,” random geometric graphs have been used for modeling
several real-world networks, among them wireless ad hoc and sensor net-
works, biological networks, and social networks.

A random geometric graph on a Poisson point process is known as a Pois-
son geometric graph. By definition, the following properties hold for a Pois-
son geometric graph: (1) for every region S in the unit square [0, 1]2, the
number of nodes in S, N(S), is Poisson distributed with parameter n|S|,
where n is the total number of nodes in [0, 1]2 and |S| is the area of the
region S, that is,

Pr {N(S) = k } = ((n |S|)k /k!) e−n |S|;

and (2) for every finite collection of disjoint regions in the unit square [0, 1]2,
{S1, S2, . . . , Sm}, the random variables N (S1) , N (S2) , . . . , N (Sm) are
independent. An example of a Poisson random geometric graph on fifteen
vertices for three values of the range parameter is shown in Figure 5.3. The
above properties can be employed to derive the distribution of vertex degrees
in a Poisson geometric graph, as expressed by the following lemma.

Lemma 5.14. Assume that n � 1 and πr2 � 1 for a Poisson random
geometric graph G(n, r) on [0, 1]2. Let d(vi) denote the degree of vertex i,
located in subregion S of area πr2. Then d(vi) is Poisson distributed with
parameter nπr2. Therefore, for all i, E{d(vi)} = nπr2.

Our next observation pertains to probabilistic connectivity of Poisson ge-
ometric graphs as a function of the vertex range r.

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 109

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1r = 0.48 r = 0.80r = 0.60

λ
2
 = 9.59

λ
n
 = 15

Avg. node degree = 12.80

λ
2
 = 4

λ
n
 = 13.56

Avg. node degree = 9.60

λ
2
 = 1.44

λ
n
 = 10.44

Avg. node degree = 5.87

Figure 5.3: Connectivity of a 15-node realization of a random geometric
graph G(15, r) for r = 0.48, r = 0.60, and r = 0.80

Lemma 5.15. Consider a Poisson random geometric graph G(n, r) in the
plane. For any real number α, Pr{G(n, r) is connected } ≥ e−e−α

, when
nπr2 > ln(n) + α.

Lemma 5.15 provides guidelines for choosing the “range” of vertices in
a random geometric graph to ensure a certain probability of connectivity
for the resulting network. For example, if we would like the probability of
network connectivity to be at least 0.99, then one can set α = 4.7. For a
10-node connected network, r > 0.473 would suffice; for 20- and 100-node
networks, one must have r > 0.35 and r > 0.173, respectively.

5.4.2 Small-world and Scale-free Networks

Although in this chapter we offered a glimpse into certain probabilistic mod-
els of networks, for example, random and random geometric graphs, the area
of network modeling, particularly for social and sensor networks, is a rich
area of research. For example, the small-world network offers a model that
exhibits two features that are often observed in social networks: (1) most
vertices have low pairwise distance, resembling an average short distance
between a pair of nodes in a random graph; and (2) there is a higher proba-
bility that two vertices will be connected directly to one another if they have
another neighboring vertex in common. The second feature is referred to
as the clustering effect; the clustering coefficient of the network, often nor-
malized to be in the unit interval, captures, for example, how likely it is for
two individuals who have a common friend in a social network to be friends
themselves. A particular example of the small-world network was offered
by Watts and Strogatz, where a few edges in a k-regular lattice are chosen
and randomly “rewired,” in the sense that one of their end points is moved to

110 CHAPTER 5

a new random vertex (however, the resulting graph should remain a simple
graph even after this random rewiring). Another model of interest in many
applications is the scale-free network, where certain nodes in the network
are highly connected whereas most nodes have low degrees. In particular,
the underlying degree distribution is assumed to follow a power law relation

p(k) = Pr {a random node in the network has k neighbors} ≈ k−γ ,

where γ is typically between 2 and 3. This network model has been used to
mimic a number of physical, social, and biological networks. A particular
mechanism for generating scale-free networks is the preferential attachment
as proposed by Barabási and Réka [16]. In this proposed procedure for
generating scale-free networks, the probability that a node attains a new
neighbor is an increasing function of its degree in the network.

SUMMARY

In this chapter, we provided an introduction to the probabilistic aspects of
network protocols. Our emphasis has been on two extensions of the basic
Lyapunov approach for the analysis of the agreement protocol–one for the
case when the underlying network is random, and the other for when the
protocol is corrupted by noise.

We concluded the chapter by an overview of other probabilistic network
models, including random geometric graphs, and small-world and scale-free
networks.

NOTES AND REFERENCES

Random graphs constitute an active area of research at the intersection of
combinatorics, graph theory, and probability. They are often on the list of
networks that are collectively referred to as complex networks in physics
and engineering literature.

The model that we have used in this chapter for “random agreement” is
often called the Erdős-Rényi model of random networks [76],[99], due to the
pioneering work of Erdős and Rényi [76]. The use of notions from stochas-
tic stability, namely, supermartingales, for analysis of agreement over ran-
dom graphs was introduced by Hatano and Mesbahi [113]. Extensions to
random digraphs and using the theory of stochastic matrices can be found
in the works of Porfiri and Stilwell [194], Wu [250], and Bruneau, Joye, and
Merkli [39]. Cogburn [51] and Tahbaz-Salehi and Jadbabaie [227] present
necessary and sufficient conditions for almost sure convergence for the prod-

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 111

uct of random stochastic matrices, which in turn has a direct interpretation
in terms of agreement over random networks.

Our discussion of the behavior of λ2(G) when G is a random graph is
based on the works of Juhász [128] and Juvan and Mohar [129], which are
inspired by the semicircle law for symmetric matrices; see Wigner [245],
Arnold [12], and particularly Füredi and Komlós [94].

Section 5.3 is based on the work of Hatano, Das, and Mesbahi [114],
which closely parallels Chapter 2 of the book by Polyak [193] as well as
§7.8 of the book by Bertsekas and Tsitsiklis [22], extended to the case when
part of the gradient is governed by the graph Laplacian. Lemma 5.11 is
from Chapter 2 of [193]. The randomized gossip algorithm of Exercise 5.10
is discussed in the paper by Boyd, Ghosth, Prabhakar, and Shah [34].

SUGGESTED READING

We suggest the books of Janson, Luczak, and Rucinski [125] and Bol-
lobás [27] for much more on random graphs. There are a number of excel-
lent books on probability theory; we recommend the one by Shiryaev [216].
For an overview of various probabilistic models of networks we recommend
Newman, Barabási, and Watts [175]. This reference not only collects some
of the influential papers in the general area of networks, but also provides
concise tutorials for each network model.

EXERCISES

Exercise 5.1. Consider the backward product of independent identically
distributed stochastic matrices as

Hk = PkPk−1 · · ·P1.

Derive conditions for convergence

lim
k→∞

H(k) → 1vT in the mean,

for some vector v.

Exercise 5.2 Regenerate, even approximately, Figure 5.1.

Exercise 5.3. Prove Proposition 5.10.

Exercise 5.4. What is the expected number of edges in G ∈ G(n, p)?

112 CHAPTER 5

Exercise 5.5. Propose a random model for balanced directed graphs and
extend the analysis of §5.2 to this proposed model.

Exercise 5.6. A set of vertices in the graph is called an independent set
if none of the vertices are neighbors of each other. Find a bound on the
probability that G(n, p) has k independent vertices, where 2 ≤ k ≤ n.

Exercise 5.7. Prove Lemma 5.14.

Exercise 5.8. Comment on the conditions listed in Equation 5.13 and why
they might be required for the convergence of the noisy agreement protocol.

Exercise 5.9. Examine the behavior of the noisy agreement protocol on
a graph with n vertices, with the fixed step size γ(k) = 1/n. Do the
agents’ states converge–in some probabilistic sense–to the agreement sub-
space? Examine the covariance of the limiting state and whether it is depen-
dent on the structure of the underlying graph.

Exercise 5.10. Consider a weighted digraph on n nodes, where the weight
pij on edge (i, j) represents the probability that vertex i communicates with
vertex j. Let P be the corresponding stochastic matrix and assume that P
is such that it has a unique eigenvalue with unit magnitude. Consider next
the gossip algorithm, where at time index k, a node in the digraph awakes
with probability 1/n, and averages its value at time index k with only one
of its neighbors–with a probability that is dictated by the weight on the cor-
responding edge.

(a) Construct the matrix W such that the update rule for the above gossip
algorithm can be expressed as

x(k + 1) = Wx(k), k = 0, 1, 2, . . . ,

where x(k) = [x1(k), x2(k), . . . , xn(k)].

(b) Show that for this gossip algorithm, when

k ≥ 3 log(1/ε)/ log λ2(W)−1,

one has

Pr{‖x(k) − (1/n)x(0)T 11‖
‖x(0)‖ ≥ ε} ≤ ε,

where λ2(W) is the second largest (in magnitude) eigenvalue of W .

PROBABILISTIC ANALYSIS OF NETWORKS AND PROTOCOLS 113

Exercise 5.11. Consider the noisy agreement protocol (5.12) over a random
graph G ∈ G(n, p). Simulate this protocol for various values of n, p, and σ,
with the step size specified as (5.24). What observations can you make on
the relationship between the convergence properties of the protocol on one
hand, and the range of values for these three parameters, on the other?

This page intentionally left blank

PART 2

MULTIAGENT NETWORKS

This page intentionally left blank

Chapter Six

Formation Control

“Philosophy is like trying to open a safe with a combination lock:
each little adjustment of the dials seems to achieve nothing,

only when everything is in place does the door open.”
— Ludwig Wittgenstein

Formations can be loosely characterized as geometrical patterns to be re-
alized by a multiagent team. Formations appear in a number of biological
systems, such as the well-known V-shape, employed by geese and other
large migratory birds that is thought to reduce the drag force on individ-
ual birds while ensuring sufficient interagent visibility. In this chapter, we
discuss various issues related to the specification and execution of forma-
tions. We also show how the agreement protocol and its extensions can
be used to obtain relative state-based coordination strategies, as well as a
nonlinear, distance-based strategy for formation control.

Formation control is one of the first problems one typically addresses when
controlling multiple mobile agents. In this chapter, we present this topic
by first discussing how formations can be specified, and then proceed by
presenting a suite of graph-based formation control strategies.

Regardless of the particulars of a given target formation problem, these
problems all share the general property of involving moving the agents in
such a way that they satisfy a particular shape or relative state and a certain
aspect of assigning roles (targets in the shape or the relative state) to indi-
vidual agents. In fact, formation control problems can be defined by a shape
or a relative state, as well as an assignment component. One can think of
the first component as dictating what the formation should “look” like, and
the second component as codifying which agent should take on what role in
the formation.

118 CHAPTER 6

6.1 FORMATION SPECIFICATION: SHAPES

We start with the specification of formation shapes and the notion of graph
rigidity.

6.1.1 Shapes

Let D be a set of relative, desired interagent distances, that is,

D = {dij ∈ R | dij > 0, i, j = 1, . . . , n, i �= j},
with dij = dji, and where we assume that D is a feasible formation. Feasi-
bility means that the formation can in fact be realized, that is, that there are
points ξ1, . . . , ξn ∈ Rp (p = 2 corresponds to the planar case, while p = 3
encodes 3D formations) such that

‖ξi − ξj‖ = dij for all i, j = 1, . . . , n, i �= j.

An example of a feasible and an infeasible formation shape specification
over three agents is shown in Figure 6.1.

v1 v2

v3

(0, 0) (1, 0)

(1/
√

2, 1/
√

2)

D = {d12 = d13 = d23 = 1}
(a) Feasible formation

v1 v2

v3

(0, 0) (1, 0)

?

D = {d12 = d23 = 1, d13 = 3}
(b) Infeasible formation

Figure 6.1: Two formations specified through desired interagent distances.
The left figure corresponds to a case where all three distances are equal to
one, resulting in an equilateral triangle. The right figure shows a case where
it is impossible to place three agents in the plane–or in any other Euclidean
space for that matter–such that the desired interagent distances are realized.

By a scale invariant formation D we understand any set of distances D′

such that

D′ = αD

for any α ∈ R+. This type of formation specification makes sense in appli-
cations where the environment is moderately cluttered and a scaled contrac-
tion or expansion of the formation may be needed to negotiate the environ-
ment. An example of this is shown in Figure 6.2, where three agents are to

120 CHAPTER 6

using D as the formation specification, one could use

Ξ = {ξ1, . . . , ξn}, ξi ∈ Rp, i = 1, . . . , n,

where ‖ξi − ξj‖ = dij, i, j = 1, . . . , n, i �= j. Any collection of points
x1, . . . , xn in Rp is thus said to satisfy the formation specification if

xi = ξi + τ for all i = 1, . . . , n

for some arbitrary translation τ ∈ Rp. We summarize these different for-
mation specifications in the following table.

Interagent distances
D = {dij = dji ≥ 0, i, j = 1, . . . , n, i �= j}

formation specification interpretation

scale invariant D
‖xi − xj‖ = αdij

for some α > 0

rigid D ‖xi − xj‖ = dij

translational invariant Ξ xi = ξi + τ
for some τ ∈ Rp

6.1.2 Rigidity

Although we have already implicitly hinted at the concept of graph rigidity,
this concept has a clear and concise graph theoretic interpretation. Graph
rigidity is the study of formation graphs for which the only permissible mo-
tions, while maintaining proper edge distances, are rigid motions. Graphs
that satisfy these properties are promising candidates for specifying forma-
tions in that they describe the formation shape using only interagent distance
specifications.

Assume that a formation has been specified by the formation graph Gf =
(V,Ef , w), where w : Ef → R+ associates a feasible, desired interagent
distance to each agent pair in the formation graph. Now, given a set of
feasible points Ξ, we define a framework as G(Ξ) = (Ξ,Gf), where Ξ and
Gf are as previously defined. We can also define a trajectory of a framework
G(Ξ) as the set of continuous states, x1(t), . . . , xn(t), with initial conditions
xi(0) = ξi(0), i = 1, . . . , n, and t ≥ 0. A trajectory represents the motion

FORMATION CONTROL 121

of a multiagent network that is initially in the desired target formation; we
say that such a motion is edge-consistent if ‖xi(t) − xj(t)‖ is constant for
all {vi, vj} ∈ Ef .

Using this terminology, we call the trajectory rigid if the distances be-
tween every pair of states xi(t) and xj(t), not just between states corre-
sponding to nodes that are adjacent in the formation graph, remain constant.
Thus, a rigid trajectory represents a rigid motion of the network, starting
from the target formation, during which all interagent distances are main-
tained.

Definition 6.1 (Rigid and Flexible Frameworks). A framework is rigid if
and only if all edge-consistent trajectories of the framework are rigid tra-
jectories. If a framework is not rigid, we refer to it as flexible.

It is clear that rigid frameworks represent rigid formations, that is, for-
mations whose shape can be maintained rigidly while only maintaining the
desired interagent distances. Figure 6.3 provides examples of rigid and flex-
ible frameworks.

x1

x2

x3

x4

x1

x2

x3

x4

Figure 6.3: The left figure corresponds to a flexible framework in which
agent 4 can move anywhere on the dotted circle (thus changing its distances
to agents 1 and 2) while still satisfying the distance constraint with agent 3.
The right figure corresponds to a rigid framework in the planar case.

Note that rigidity is defined for frameworks, that is, graphs together with
configurations, rather than graphs alone. In fact, in order to properly de-
fine graph rigidity, we need the additional notion of infinitesimal rigidity.
Assume that the trajectories xi(t) associated with each vertex in the frame-
work are differentiable functions. Since we have defined an edge-consistent
trajectory of G(Ξ) to be one such that the distance between points xi(t) and
xj(t) remains constant along the trajectory, it follows that

(ẋi(t) − ẋj(t))T (xi(t) − xj(t)) = 0, for all {vi, vj} ∈ Ef . (6.1)

122 CHAPTER 6

The assignment of constant instantaneous velocities ẋi = ui that satisfy
(6.1) at t = 0 is described as an infinitesimal motion of the framework.
Let u = [uT

1 , uT
2 , . . . , uT

n]T be such an infinitesimal motion, applied at the
configuration points ξ1, . . . , ξn. The relation (6.1) can then be represented
in matrix form as

R(G(Ξ))u = 0, (6.2)

where R(G(Ξ)) is known as the rigidity matrix. We note that the rigidity
matrix has card(Ef) rows and pn columns, where p is the dimension of the
state of the agents, that is, ξi ∈ Rp, i = 1, . . . , n.

Definition 6.2. A framework G(Ξ) is infinitesimally rigid if R(G(Ξ))u = 0
for all infinitesimal motions u.

The special case of planar agents, that is, where p = 2, is particularly
well understood.

Theorem 6.3. A framework with n ≥ 2 points in R2 is infinitesimally
rigid if and only if rank R(G(Ξ)) = 2n − 3.

The following theorem establishes the relationship between infinitesimal
rigidity and rigidity in any dimension.

Theorem 6.4. Infinitesimal rigidity implies rigidity.

We note, however, that rigidity does not imply infinitesimal rigidity, which
is a fact that will be pursued in Exercise 6.2.

It is clear that the rigidity of a framework G(Ξ) depends on both the topol-
ogy (the graph) and the configuration. For a given formation graph Gf , we
can think of a framework G(Ξ) = (Ξ,Gf) as a particular realization of Gf ,
and we define a generically rigid graph as follows.

Definition 6.5. A graph is generically rigid if it has an infinitesimally rigid
realization.

Note that generic rigidity is a property of a graph, not of a framework.
Therefore, we refer to generically rigid graphs as rigid graphs. If Gf is a
rigid graph, and G(Ξ) = (Ξ,Gf) is infinitesimally rigid, we say that Ξ is a
generic configuration for Gf , and that G(Ξ) is a generic realization.

The configuration Ξ = {ξ1, . . . , ξn} defines a point in Rpn. There are,
however, a number of such points that are generic realizations of a partic-
ular formation graph. The following lemma describes the set of generic
configurations for a generically rigid graph.

FORMATION CONTROL 123

Lemma 6.6. If Gf is a generically rigid graph, then the set of all generic
configurations for Gf is a dense, open subset ofRpn.

This implies that, for a generically rigid graph Gf , any configuration Ξ′

that is a realization of Gf can be well approximated by a generic configura-
tion Ξ such that G(Ξ) = (Ξ,Gf) is infinitesimally rigid and, therefore, rigid
by Theorem 6.4.

It is clear that adding edges to a rigid graph cannot affect its rigidity,
which seems to imply that there is a minimum number of edges needed to
produce a rigid graph. We define a minimally rigid graph as follows.

Definition 6.7. A graph is minimally rigid if it is rigid but does not remain
rigid after the removal of a single edge.

The following theorem provides necessary and sufficient conditions for a
graph to be minimally rigid in the planar case.

Theorem 6.8. A graph with n ≥ 2 vertices inR2 is minimally rigid if and
only if
(1) it has 2n − 3 edges, and
(2) each induced subgraph of n′ ≤ n vertices has no more than 2n′ − 3

edges.

As a consequence, through rigidity, we have a handle on favorable shape
specifications for formation control applications if the formations are al-
lowed to be both translationally and rotationally invariant. Moreover, we
note that all that is needed in order to enforce a rigid formation is the ability
for the individual agents to measure and maintain interagent distances.

6.2 FORMATION SPECIFICATION: RELATIVE STATES

Translationally invariant formations can be directly specified by a set of
desired relative states in the formation configuration space, as opposed to a
set of relative distances among the agents, as examined in §6.1. For example,
suppose we want to specify that a group of three point masses in R3 keep a
particular relative position in space. Denoting the position of point mass i
as xi ∈ R3, this specification can be accomplished by defining the vector

z(t) = [(x1(t) − x2(t))T , (x2(t) − x3(t))T]T ∈ R6

and then specifying a reference relative state vector zref for the desired for-
mation. In this case, since we are using vector specification as opposed to

124 CHAPTER 6

a shape specification, the formation configuration is completely specified.
For example, in the above scenario, the vector zref implicitly specifies all
interagent relative states as, for example,

x1(t) − x3(t) = (x1(t) − x2(t)) + (x2(t) − x3(t)).

The configuration specification of formations provides the flexibility of com-
pletely specifying them either relatively or inertially. By an inertial frame,
we refer to a coordinate axis that is assumed to be nonaccelerating and non-
rotating.1 For example, specifying the formation inertially can be accom-
plished by letting xo be the coordinates of a fictitious point mass with re-
spect to the inertial frame, and then specifying the formation of the three
point masses by defining

z(t) = [(xo(t) − x1(t))T , (x1(t) − x2(t))T , (x2(t) − x3(t))T]T ∈ R9

and specifying the corresponding zref. Note that xo can be set as the origin of
the inertial frame as well. In the latter case, this specification is equivalent
to specifying the inertial vector [xT

1 xT
2 xT

3]T ∈ R9.
Desired formation configurations can conveniently be encoded using the

incidence matrix of the graph. Thus for the example above one can define
the vector z as

z(t) = D(D)T x(t),

where

x(t) = [x1(t)T , x2(t)T , x3(t)T]T

and D is a directed path graph on three nodes with the incidence matrix

D(G) =

⎡⎣ 1 0
−1 1
0 −1

⎤⎦⊗ I,

with I as the 3 × 3 identity matrix and ⊗ denoting the Kronecker prod-
uct. Subsequently, the formation can be specified in its configuration space
by specifying the vector zref. More generally, a formation on n agents,
each of whose state evolves in Rp, can be specified by choosing a span-
ning subgraph of the directed complete graph,2 denoted by D, defining
z(t) = (D(D)T ⊗ I)x(t), with I being the p × p identity matrix, and then
setting zref as the desired formation configuration. We refer to the formation

1With respect to another inertial frame, say, one that is attached to a distant star!
2The directed version of the complete graph is a digraph where every edge is replaced

with two directed edges, each with different end points.

FORMATION CONTROL 125

specification via weakly connected digraphs on n vertices as a relative state
specification (RSS).

Analogous to shapes, relative formation configurations can be specified in
different, yet equivalent, ways. As an example, suppose that the formation
has been specified via two distinct spanning digraphs, Dj and Dd, on n
vertices. In order to show the equivalence between these two RSS, we seek
a linear transformation Tdj such that

Tdj D(Dj)T = D(Dd)T . (6.3)

We refer to the transformations between distinct pairs of RSS as T transfor-
mations. We now proceed to gain a better insight into the form of various T
transformations among distinct classes of (weakly connected) digraphs on
the same vertex set. Our discussion revolves around three canonical cases.
These cases include transformations (a) from an RSS to one of its subgraphs,
(b) from a spanning directed tree RSS to any other RSS, and (c) between two
arbitrary weakly connected RSS.

(a) Transformation from an arbitrary RSS to one of its subgraphs. First
consider the scenario where the desired RSS, Dd, is a subgraph of
another RSS, Dj . Given that Dd and Dj have md and mj edges, re-
spectively, the transformation Tdj , satisfying D(Dd)T = TdjD(Dj)T ,
is an md × mj matrix. Consider next the decomposition

Tdj = [T̂dj T̃dj] ∈ Rmd×mj , (6.4)

where T̂dj ∈ Rmd×md and T̃dj ∈ Rmd×mj−md , and the correspond-
ing rearranging of the incidence matrix D(Dj) is

D(Dj) = [D(Dd) D(Dj/d)];

hence

T̂dj = I and T̃dj D(Dj/d)
T = 0.

The trivial solution for T̃dj is the zero matrix while the general matrix
solution consists of rows that belong to the null space of D(Dj/d).

(b) Transformation from a directed spanning tree to an arbitrary RSS. The
second canonical case corresponds to the transformation Tdj where
Dj is a spanning tree and the target digraph Dd is an arbitrary RSS.
In this case, one can make the following observation.

Proposition 6.9. Let Dj be a directed spanning tree RSS and Dd be
an arbitrary RSS. Then

Tdj = D(Dd)T D(Dj) [D(Dj)T D(Dj)]−1, (6.5)

126 CHAPTER 6

where D(Dj) and D(Dd), represent, respectively, the incidence ma-
trices associated with RSS Dj and Dd.3

Proof. From the matrix equation (6.3) it follows that D(Dj)T T
dj =

D(Dd), and hence

{D(Dj)T D(Dj)}T T
dj = D(Dj)T D(Dd).

Since rank D(Dj) = n − 1, the matrix product D(Dj)T D(Dj) is
invertible, and (6.5) follows.

(c) Transformation between two arbitrary weakly connected RSS. There
are at least two approaches to the characterization of a T transfor-
mation between two arbitrary weakly connected RSS, Dd and Dj .
(1) Transform the given digraph Dj to a spanning tree subgraph Dk

(which corresponds to a Case 1 scenario above), followed by the
transformation from Dk to the RSS Dd given in Proposition 6.9, and
letting Tdj = TdkTkj . (2) Complete the cycles of Dj to obtain a com-
plete digraph Dc, and choose an appropriate subgraph of Dc (re-orient
edges if necessary) that corresponds to Dd; then let Tdj = TdcTcj . An
explicit formula for the T transformation Tdj between two arbitrary
weakly connected RSS is facilitated by the following lemma.
Lemma 6.10. The collection of n − 1 rows of the incidence matrix
for a weakly connected digraph, corresponding to its n − 1 signed
characteristic vectors of single vertex cuts, are linearly independent.

As a direct consequence of Proposition 6.9, we arrive at the following
corollary.
Corollary 6.11. Let Dj and Dd represent two arbitrary weakly con-
nected RSS. Then

Tdj = D̂(Dd)T {D̂(Dj)D̂(Dj)T }−1D̂(Dj), (6.6)

where the rows of D̂(Dj) and D̂(Dd) correspond, respectively, to the
n − 1 signed characteristic vectors of single vertex cuts of RSS Dj

and Dd.

Proof. The proof follows from the observation that TdjD(Dj)T =
D(Dj)T if and only if TdjD̂(Dj)T = D̂(Dj)T ; moreover, the matrix
D̂(Dj) is full row-rank.

3The identity (6.5) hints at the fact that the transformation Tjd can be viewed as the
projection of the network Dd along the edge space of the RSS Dj [71].

FORMATION CONTROL 127

6.3 SHAPE-BASED CONTROL

In this section, we move from specifying formations to actually achieving
them. In particular, we focus our attention on the problem of driving a
collection of mobile agents to a rotationally invariant formation, encoded
through the formation graph Gf = (V,Ef), together with an associated tar-
get location set Ξ, as in §6.1. The reason for starting with this formulation is
that it supports a solution in terms of linear formation control algorithms. In
fact, for such a setup, it will turn out that we can directly use the agreement
protocol, as discussed in Chapter 3.

As before, let xi ∈ Rp denote the position of agent i. What should be
achieved by the formation control protocol is that for some τ ∈ Rp, xi =
ξi + τ , for all i = 1, . . . , n. For this, we encode the actual agent network
through the graph G = (V,E), which we will refer to as the interaction
graph. This graph may be dynamic, that is, have the edge set E change over
time as agents change their adjacency relation as they move around in the
environment, or static.

Regardless of whether the graph is static or dynamic, what we want the
formation control to achieve is to drive the agents in such a way that:
(R1) ‖xi(t) − xj(t)‖ converges asymptotically to dij for all i, j such that

{vi, vj} ∈ Ef .

(R2) If the interaction graph G(t) is dynamic, it should converge to a static
graph that is a supgraph of the desired graph Gf (without weights) in
finite time. In other words, what we want is that Ef ⊆ E(t) for all
t ≥ T , for some finite T ≥ 0.

6.3.1 The Static Case

We first consider the situation in which the interaction graph is static. For
the formation control problem to be solvable in the sense of (R1) above, we
must assume that (R2) is trivially satisfied, that is, Ef ⊆ E. If that is indeed
the case, we can define τi as the displacement of xi from the target location
ξi ∈ Ξ. In other words, we let

τi(t) = xi(t) − ξi, i = 1, . . . , n.

Now, by reaching agreement over the τi, we would have that xi − ξi = τ
for a constant displacement vector τ , which would mean that the translation-
ally invariant formation control problem has been solved. In this direction,
we simply let

τ̇i(t) = −
∑

j∈Nf (i)

(τi(t) − τj(t)).

128 CHAPTER 6

Here Nf (i) is the set of nodes adjacent to vi in the formation graph Gf , that
is,

Nf (i) = {j ∈ {1, . . . , n} | {vi, vj} ∈ Ef}.

But, noting that for all t, τ̇i(t) = ẋi(t) as well as τi(t) − τj(t) = xi(t) −
xj(t)−(ξi−ξj), leads us to the distributed linear formation control strategy,

ẋi(t) = −
∑

j∈Nf (i)

(xi(t) − xj(t)) − (ξi − ξj). (6.7)

By virtue of the convergence of the agreement protocol (as long as the
formation graph is connected), we have in fact solved the formation control
problem. An example of this is seen in Figure 6.4, in which ten agents are
driven to an equidistant circular formation.

Theorem 6.12. Consider the connected target formation graph Gf given
by (V,Ef) and a set of target locations Ξ. If the static interaction graph
G = (V,E) satisfies Ef ⊆ E, then the protocol (6.7) will asymptotically
drive all agents to a constant displacement of the target positions, that is,
for all i,

xi(t) − ξi → τ

as t → ∞.

6.3.2 The Dynamic Case

If the interaction graph is dynamic, then as a direct consequence of Theorem
6.12, as long as for all t ≥ 0, Ef ⊆ E(t) (with E(t) being the dynamic
edge set associated with the interaction graph), the protocol (6.7) is still just
dealing with the “static” formation graph. We state this observation as a
corollary.

Corollary 6.13. Given a connected, target formation graph Gf = (V,Ef),
the protocol (6.7) will asymptotically drive all agents to a constant displace-
ment of the target positions if for all t ≥ 0, Ef ⊆ E(t).

It may not be the case that Ef ⊆ E(t) for all t ≥ 0. For example,
if the interaction graph is a ∆-disk proximity graph, that is, one in which
{vi, vj} ∈ E(t) ⇔ ‖xi(t) − xj(t)‖ ≤ ∆, we might have to be slightly

FORMATION CONTROL 129

(a) t = 0 (b) t = 0.5

(c) t = 2 (d) t = 5

Figure 6.4: A collection of 10 agents that execute the formation control
strategy (6.7) in order to reach an equidistant circular formation

more creative. For instance, one could first use the agreement protocol dis-
cussed in Chapter 3 to solve the rendezvous problem in order to achieve
a complete graph. Once that graph is achieved (provided that no desired
edge distances are greater than ∆), one can switch to the protocol (6.7). A
hybrid control strategy that implements this is shown in Figure 6.5, with a
particular example in Figure 6.6.

When using this strategy, the transition from rendezvous to formation
control happens when a complete graph is achieved, which can be accom-
plished based on a simple single-hop communication rule. First, each agent
i that can verify that card(Ni) = n − 1, that is, when it is interacting with
all other agents in the formation, sends out a signal denoting completeness.
The agents will know that the graph is complete when they receive a similar
signal back from all other agents in the formation.

It should be noted that this strategy only works if the assumptions in
Corollary 6.13 hold, that is, if Ef ⊆ E(t) for all times after the transition
from “Rendezvous” to “Formation Control.” To enforce this in all situations

130 CHAPTER 6

ẋi = −∑
j∈N(i)(xi − xj)

ẋi = −∑
j∈Nf (i)(xi − xj − (ξi − ξj))

Rendezvous

Formation Control

G = Kn

Figure 6.5: The agents start out executing the standard agreement protocol.
Once a complete graph has been obtained (G = Kn), they switch to a lin-
ear formation control algorithm that only takes into account the adjacency
relation, as specified by Ef .

is, unfortunately, something that cannot be achieved by linear means alone.
Instead, nonlinear control strategies must be employed, a topic which will
be discussed in Chapter 7, where the problem of controlling a collection
of mobile robots, with limited sensing and communications capabilities, is
investigated.

6.4 RELATIVE STATE-BASED CONTROL

In this section, we consider control of formations specified via relative states
among their agents. This will be first pursued for linear formation control
for agents with single, double, and linear time-invariant dynamics. We then
proceed to explore how Laplacian-based potential or navigation functions
can be employed to synthesize various formation control algorithms for a
group of unicycles.

6.4.1 Linear Formation Control

We start our discussion by examining linear formation control laws for one-
dimensional single and double integrator agent models, as well as those
specified by a linear time-invariant model. In this direction we assume,

FORMATION CONTROL 131

(a) (b) (c)

(d) (e) (f)

Figure 6.6: A progression is shown where the first three figures (a), (b), and
(c) correspond to the execution of the rendezvous control strategy until the
dynamic interaction graph is a complete graph. The following three figures
(d), (e), and (f) show how the complete graph is changed to the desired
formation using only local information.

without loss of generality, that the desired formation has been specified in
the relative configuration space via a spanning tree digraph D (see §6.2).
Moreover, we assume that the relative state measurement corresponding to
a directed edge in D is available to both of its end vertices.

The model for single integrator agents is specified as

ẋi(t) = ui(t), i = 1, 2, . . . , n, (6.8)

where ui denotes the admissible control input for agent i.
Given the spanning tree digraph D employed for the formation specifica-

tion, let

z(t) = D(D)T x(t),

and let zref be the constant reference relative position for the n integrators
consistent with D. The formation error at time t is therefore

e(t) = zref − z(t),

132 CHAPTER 6

and hence

ė(t) = −D(D)T u(t).

Next, consider the state feedback controller of the form

u(t) = kD(D)e(t) (6.9)

for k > 0, which is essentially a proportional control with gain D(D). The
resulting closed loop system is now given by

ė(t) = −kLe(D) e(t),

where Le(D) = D(D)T D(D) is the edge version of the graph Laplacian for
the digraph D as discussed in Chapter 2, §2.3.4. However, since the edge
Laplacian is positive definite for a spanning tree, it follows that

lim
t→∞

e(t) = 0,

and the n single integrators (6.8), adopting the control law (6.9), asymptoti-
cally achieve the desired relative position specified by zref. In fact, applying
the controller (6.9) for the formation control of n single-integrators results
in the closed loop system

ẋ(t) = −kL(D̃)x(t) + kD(D)zref, (6.10)

where k > 0, and D̃ is the disoriented digraph of D. Note that for zref = 0,
(6.10) reduces to the (scaled) agreement protocol (3.2).

Next, consider the relative state dynamics for a network of double inte-
grators,

ẍi(t) = ui(t), i = 1, 2, . . . , n, (6.11)

where ui denotes the admissible control input for agent i. It is assumed that
the desired relative positions and velocities for these double integrators have
been specified via a spanning tree digraph D as

[zref(t)T , żref(t)T]T .

By setting e(t) = zref(t) − D(D)T x(t), and assuming that z̈ref(t) = 0, it
follows that

ë(t) = −D(D)T ẍ(t) = −D(D)T u(t).

FORMATION CONTROL 133

Now, let the state feedback controller be of the form

u(t) = k[D(D) D(D)]
[

e(t)
ė(t)

]
, (6.12)

for some k > 0, which is essentially a proportional-derivative (PD) control
law with position and velocity error gains specified by D(D). The resulting
closed loop system is then of the form[

ė(t)
ë(t)

]
=
[

0 I
−kLe(D) −kLe(D)

] [
e(t)
ė(t)

]
,

where, once again, Le(D) is the edge Laplacian of the digraph D. The
characteristic equation for the matrix governing the error dynamics, that is,

Acl =
[

0 I
−kLe(D) −kLe(D)

]
,

is

det(λI − Acl) = det(λ2I + (λ + 1)kLe(D)) = 0.

Since λ = −1 does not satisfy this equation, it is not an eigenvalue of Acl.
The eigenvalues of Acl thus satisfy

det(λ2/(λ + 1) I + kLe(G)) = 0.

Denoting the eigenvalues of −kLe(D) by µ, one has that, for each i,

µi = λ2
i /(λi + 1),

and hence

λi =
1
2

(
µi ±

√
µ2

i + 4µi

)
.

However, since for k > 0, −kLe(D) is negative definite when G is a span-
ning tree, µi < 0 for all i and consequently, the matrix Acl is Hurwitz. This,
on the other hand, guarantees that

lim
t→∞

[
e(t)
ė(t)

]
= 0,

ensuring that the formation of n double integrators (6.11) under the forma-
tion control protocol (6.12) achieves the desired relative position and veloc-
ity specified by zref and żref.

134 CHAPTER 6

The closed loop system with the above control law now assumes the form

d

dt

[
z(t)
ż(t)

]
= E(D)

[
z(t)
ż(t)

]
+ F(D)

[
zref(t)
żref(t)

]
, (6.13)

where

E(D) =
[

0 I
−kLe(D) −kLe(D)

]
, F(D) =

[
0 0

kLe(D) kLe(D)

]
.

If we change our point of view from the closed loop dynamics on the edges
to the corresponding dynamics on the vertices, we obtain

d

dt

[
x(t)
ẋ(t)

]
= L(D̃)

[
x(t)
ẋ(t)

]
+ D(D)

[
zref(t)
żref(t)

]
, (6.14)

where

L(D̃) =
[

0 I

−kL(D̃) −kL(D̃)

]
, D(D) =

[
0 0

kD(D) kD(D)

]
,

and L(D̃) is, once again, the graph Laplacian of the disoriented D and k >
0. This can be further unwrapped as

ẍ(t) = −kL(D̃)x(t) − kL(D̃)ẋ(t) + kD(D)zref(t) + kD(D)żref(t).

We now consider yet another class of formations, namely those whose
agents have an internal dynamics described by

ẋi(t) = axi(t) + bui(t), i = 1, 2, . . . , n,

where a, b ∈ R. The main point of our discussion below is that when these
agents interact over a network to achieve a formation specified by the desired
relative states, the stability of the formation’s “relative dynamics” is not
only a function of the dynamics of each agent, in this case, parameterized
by scalars a and b, but also the structure of the underlying interaction graph.
In this direction, let z(t) = D(D)T x(t) for a spanning digraph D, which
is assumed to be consistent with the underlying formation relative sensing
geometry, possibly after the application of an appropriate T transformation
discussed in §6.2. Hence

ż(t) = az(t) + bD(D)T u(t).

FORMATION CONTROL 135

Now by letting

u(t) = kD(D)(zref − z(t)) for some k ∈ R,

one obtains the closed loop system for the formation relative dynamics as

ż(t) = (aI − kbLe(D))z + kbLe(D)zref.

To assess the stability of relative dynamics of these agents, it suffices to
consider the eigenvalues of the matrix

aI − kbLe(D)

which assume the form

a − λi(G)kb, i = 2, . . . , n,

where λi(G)’s are the eigenvalues of Le(D), as well as being the nonzero
eigenvalues of L(G). Hence the relative dynamics of the formation for the
proposed formation control is stable if and only if for all nonzero eigenval-
ues of the graph Laplacian one has4

a − λi(G)kb < 0 for all i > 2.

6.4.2 Control of Unicycles

The ideas from the previous sections can be extended for coordination and
synchronization of multiple identical planar unicycles interacting over an
information-exchange network. Unicycles are convenient models in a wide
range of applications, including those found in aerospace (unmanned aerial
vehicles) and biology (fish locomotion). Viewing the position of the uni-
cycle i in R2, with coordinates [xi, yi]T , it becomes convenient to view its
coordinates in C, represented by the complex number

ri(t) = xi(t) + j yi(t) for t ≥ 0,

where j =
√
−1. Now, since

ẋi(t) = vi cos θi(t), ẏi(t) = vi sin θi(t), and θ̇i(t) = ωi(t),

with vi denoting the speed of the unicycle, we can conveniently represent
the kinematics of n unicycles in C, assuming that ωi(t) = ui(t), via

4As before, assuming a spanning tree digraph for the relative sensing geometry whose
measurements are accessible to both end vertices of the corresponding directed edge.

136 CHAPTER 6

ṙi(t) = vie
jθi(t), θ̇i(t) = ui(t), i = 1, 2, . . . n. (6.15)

By normalizing the speed of the unicycle as vi(t) = 1, it becomes evi-
dent that its dynamics can be studied on the unit disk in the complex plane;
see Figure 6.7. Let us now consider a group of identical unicycles, whose

vi

x

y

θi

ri

xi

yi

(a)

Im

Real
θi

ui

(b)

Figure 6.7: Planar unicycle coordinates: (a) in Cartesian coordinates, (b) in
complex plane.

angular state and control input at time t can be represented as vectors

θ(t) = [θ1(t), θ2(t), . . . , θn(t)]T and u(t) = [u1(t), u2(t), . . . , un(t)]T .

We also adopt the notation

ejθ(t) = [ejθ1(t), ejθ2(t), . . . , ejθn(t)]T . (6.16)

Our goal is to explore (undirected) local interaction rules among the multi-
ple unicycles that lead to coordinated behavior among them. The unicycle
dynamics, in the meantime, offer a set of coordinated behaviors that are
desirable in applications, yet are unique with respect to their linear coun-
terparts. These behaviors include (1) synchronization, where the heading
angles for the unicycles assume a common value, (2) balanced behavior,
where the center of mass of the evolution of the unicycles remain constant,
(3) spacing, where the unicycles rotate around a prespecified center(s), and
(4) symmetrical phase patterns, where the unicycles rotate about a given
center with a certain regularity in their phase differences. Let us proceed to

FORMATION CONTROL 137

use the representation of the unicycle kinematics on the unit disk in the com-
plex plane (6.15) in conjunction with Laplacian-based potentials, to address
how the above four types of behavior can emerge from local interaction rules
implemented over a graph.

In what follows, it becomes convenient to think of ṙi(t) = ejθi as the
“state” of agent i. First, we synthesize a navigation function for unicycle
coordination along the following constructs. For positive integer m, define
the mth order average state,

pm(θ) =
1

nm
1T ejmθ,

and the mth order potential Um : [0, 2π]n → R+,

Um(θ) =
n

2
|pm(θ)|2 =

1
2nm2

(ejmθ)∗11T ejmθ, (6.17)

where (ejmθ)∗ is the complex conjugate of ejmθ . Thus, for example, p1(θ)
is the velocity of the center of mass of the n unicycles as

p1(θ) =
1
n

∑
i

ṙi(t) =
d

dt

(
1
n

∑
i

ri(t)

)
,

and U1(θ) can be considered as the kinetic energy of this center of mass. It
is also convenient to define, for each positive integer m, the “average” angle
ψm such that

pm(θ) = |pm(θ)|ejψm.

The utility of the potential function Um (6.17) is now made explicit through
the following observation.

Proposition 6.14. For each positive integer m, the unique minimum of the
potential Um (6.17) corresponds to the case when

pm(θ) = 0. (6.18)

The unique maximum of Um(θ) (6.17), on the other hand, corresponds to
the case when for distinct pairs of unicycles i and j, one has

θi = θj mod (2π/m).

Proof. Since Um(θ) ≥ 0 for all θ, it follows that it achieves its global min-
imum value of zero when pm(θ) = 0. On the other hand, the maximum is
achieved when all phases are aligned, in the sense that

mθi = ψm mod 2π.

138 CHAPTER 6

It remains to show that the other critical points of Um(θ), that is, those
that make ∂Um/∂θi = 0 for i = 1, . . . , n, do not correspond to either a
minimum or a maximum of Um(θ). First, we note that all critical points of
Um(θ) satisfy

∂Um(θ)
∂θi

=
〈
pm(θ), jejmθi

〉
= |pm(θ)|

〈
ejψm , jejmθi

〉
= 0, i = 1, 2, . . . , n. (6.19)

If pm(θ) �= 0, condition (6.19) expresses that at the critical configuration,
some of the unicycles, say n − r of them, are aligned with ψm, and r of
them are 180 degrees apart from ψm, where without loss of generality we
have assumed that 0 ≤ r < n/2.5 In the meantime, since at these critical
points

m|pm(θ)| = 1 − (2r/n),

it follows that, when all unicycles are aligned with ψm, the potential Um(θ)
reaches its maximum. For the critical points of Um(θ) one has

∂2Um(θ)
∂θ2

i

=
1
n
− m

〈
pm(θ), ejmθi

〉
=

1
n
− m cos(ψm − mθi)|pm(θ)|. (6.20)

Since when r > 0, one has m|pm(θ)| = 1 − (2r/n) > 1/n, the expression
(6.20) takes negative values when mθi = ψm and positive values when
mθi = ψm + π, indicating that the critical points, other than the minimum
and maximum states identified in the statement of the proposition, are in
fact saddle points.

The following definitions once again reinforce which coordinated behav-
iors are of particular interest in our discussion.
Definition 6.15. The phase vector θ is called a balanced configuration of
order m when

pm(θ) = 0

and a synchronized configuration of order m when for all distinct pairs of
unicycles i and j,

θi = θj mod (2π/m).

5Note that multiplication of a complex number by j corresponds to rotating it in the
complex plane by 90 degrees.

FORMATION CONTROL 139

When m = 1 the balanced and synchronized configurations of order m are
referred to as balanced and synchronized configurations, respectively.

As the maximum and minimum of U1(θ) correspond to the synchronized
and balanced configurations, respectively, it is natural to propose the gradi-
ent control law

ui(t) =−k∇iU1(θ) = −k
〈
p1(θ(t)), jejθi(t)

〉
=−k

n

n∑
j=1

sin(θj(t) − θi(t)), i = 1, 2, . . . , n,

which steers the unicycle group, when k > 0, toward the minimum of
U1(θ), or the balanced configuration, and, when k < 0, toward the maxi-
mum of U1(θ) or synchronization; see Figure 6.8. In both cases, the critical
points that do not correspond to the minimum or maximum of U1(θ) are
unstable.

Since the control law above requires information exchange among all uni-
cycles, we would like to consider to what extent this control law can be
adapted to the case when the interunicycle information exchange is dictated
by an underlying–not necessary complete–undirected network G. In this
venue, since the Laplacian over the complete graph is

L(Kn) = nI − 11T , (6.21)

it follows that the potential Um(θ) (6.17) is in fact

Um(θ) =
n

2m2
− 1

2nm2
(ejmθ)∗L(Kn)ejmθ,

suggesting that we should consider the critical points of the Laplacian-based
potential

Wm(θ) =
1
2
(ejmθ)∗L(G)ejmθ =

1
2

〈
ejmθ, L(G) ejmθ

〉
, (6.22)

for synthesizing distributed control laws that operate over arbitrary con-
nected graphs. Recall that for a connected network G, the null space of
L(G) is characterized by the agreement subspace. Hence, the minimum of
potential Wm (6.22) corresponds to the case when

ejmθ(t) = ejθo1,

for some θo ∈ [0, 2π), resulting in the potential value of zero. Thereby,
following the gradient control law

ui(t) =−k
∂Wm(θ)

∂θi
= mk

∑
j∈N(i)

sin m(θj(t) − θi(t)), (6.23)

FORMATION CONTROL 141

when k > 0 and invoking LaSalle’s invariance principle, ensures that the
unicycles are steered toward the synchronized configuration of order m,
which is the minimum of the Laplacian-based quadratic potential Wm(θ)
(6.22).

It is tempting to conjecture that the global maximum of the potential
Wm(θ) (6.22) corresponds to the balanced configuration of order m for the
group of unicycles interacting over an arbitrary connected network. How-
ever, this potential can have multiple local maxima, and in fact, nonunique
global maxima, some of which, do not correspond to the balanced config-
uration of order m for the unicycles. In the meantime, when the network
is assumed to be a circulant graph G, the function Wm(θ) (6.22) is in fact
globally maximized when ejmθ(t) is the eigenvector corresponding to the
maximum eigenvalue of L(G). When this occurs, we have 1T ejmθ(t) = 0
and hence the unicycle group, while following the gradient control (6.23)
with k < 0, steers the unicycle group to a balanced configuration of order
m. We state the above observations as a theorem; see notes and references.

Theorem 6.16. Let G be a connected graph. Then the global minimum of
Wm(θ) (6.22) is the synchronized configuration of order m. Moreover, if
the interaction network is a circulant graph, then the global maximum of
Wm(θ) (6.22) is a balanced configuration of order m. In either case, a
gradient law of the form (6.23) provides a distributed control strategy to
attain these configurations with k > 0 for reaching synchronization, and
k < 0 for reaching a balanced configuration.

In addition to synchronization and balanced configurations that deal with
phases of the unicylces, another facet of their coordination involves their
spacing. In order to gain an insight into controlling this aspect of their mo-
tion, consider the case when ui(t) = ωo, for all i in (6.15), where ωo is a
nonzero constant. In this scenario, the unicycles will traverse circles cen-
tered at

ci(t) = ri(t) +
j

ωo
ejθi(t), i = 1, 2, . . . , n,

each with radius

ρo =
1

|ωo|
.

The reader is invited to verify that the direction of the rotation of the uni-
cycles depends on the sign of ωo. In order to consider the agreement on
the center of rotation for all unicycles, it is convenient to introduce a new
variable

qi(t) = −jωoci(t) = ejθi(t) − jωori(t), i = 1, 2, . . . , n, (6.24)

142 CHAPTER 6

which simultaneously encapsulates information on the heading and the cen-
ter of rotation for the ith unicycle.

Theorem 6.17. Consider the unicycle group interacting over a connected
graph G, and construct the potential

S(q(t)) =
1
2
〈q(t), L(G)q(t)〉 ,

where q(t) = [q1(t), . . . , qn(t)]T and each qi(t) is defined as in (6.24).
Then S(q) reaches its global minimum when q(t) = qo1 for some qo ∈ C.
Moreover, the gradient flow

ui(t) = ωo + k
〈
[L(G)]i.q(t), jejθi(t)

〉
(6.25)

for k < 0 and ωo �= 0 steers the group of unicycles toward agreement on
their centers of rotation as well as on their respective phases (mod 2π).6

The proof of this theorem, which not surprisingly involves LaSalle’s in-
variance principle, is left as an exercise.

The Laplacian-based potential (6.22) can also be utilized to exercise more
control on the phase patterns that the unicycle group exhibits. In this direc-
tion, let an (η, n)-pattern for a group of unicycles, with η as a divisor of
n, be a symmetric arrangement of n phases in η clusters, uniformly spaced
around the unit circle. Hence, the (1, n)-pattern is the synchronized config-
uration while the (n, n)-pattern is the splay state–in this case, each unicycle
has a distinct phase, spread evenly on the unit disk.

Lemma 6.18. Let L(G) be the Laplacian of a circulant graph on n ver-
tices. For any positive integer m, an (η, n)-pattern is a critical point of the
potential

Wm(θ) =
1
2

〈
ejmθ, L(G)ejmθ

〉
.

Proof. Recall from Chapter 2 that the matrix of eigenvectors of L(G) is the
Fourier matrix. That is, for the angle θ̄ characterizing the (η, n)-pattern,
ejmθ̄ is an eigenvector of L(G). Thus θ̄ is a critical point of Wm(θ).

We conclude this section with an observation on the means by which a
group of unicycles can be driven to symmetric patterns via local interactions
over an undirected graph.

6The notation [L(G)]i. signifies the ith row of the matrix L(G).

FORMATION CONTROL 143

Theorem 6.19. Consider a connected circulant graph G. If θ̄ character-
izes an (η, n)-symmetric pattern with η as a divisor of n, then it is a local
minimum of the potential

Ŵ (θ) = −1
2

η∑
m=1

km

〈
ejmθ, L(G)ejmθ

〉
, (6.26)

where km > 0 for m = 1, . . . , η − 1, and

kη < −
η−1∑
m=1

km.

Hence, the potential (6.26) can be used to synthesize a distributed gradient-
based control law that steers the unicycles to a formation with an (η, n)-
pattern.

Proof. The proof involves the linearization of the gradient of the potential
Ŵ (θ) (6.26) at θ̄ which leads to a form built around a matrix that is essen-
tially a weighted Laplacian for the underlying circulant graph. The complete
proof is left as an exercise.

We emphasis that the convergence of the gradient algorithm proposed in
Theorem 6.19 is only local in nature.

6.5 DYNAMIC FORMATION SELECTION

6.5.1 The Centralized Case

Given that we know how to achieve target formations, the next question is
what formations to use in the first place. As already stated, one can easily
envision that the agents should be spread out when navigating and explor-
ing free space, while a more tight formation is preferred when negotiating
cluttered environments, as illustrated in Figure 6.2. What this implies is that
it could potentially be beneficial to let the team switch between different
formations in reaction to environmental changes.

To this end, we can define a formation error with respect to each possible
formation under consideration,

Ek : Rp × · · · × Rp → R+ ∪ {0},
with smaller values indicating a smaller error, for example,

Ek(x1, . . . , xn) =
n∑

i=1

n∑
j=1

ωk
ij

(
‖xi − xj‖2 − (dk

ij)
2
)2

. (6.27)

144 CHAPTER 6

Here the superscript k indicates the kth formation as specified through Dk,
dk

ij = dk
ji is the desired distance between agents i and j, and ωk

ij = ωk
ji >

0 is a weight that corresponds to the relative importance of enforcing the
correct distance between agents i and j. This construction ensures that Ek
is positive semidefinite as well as Ek(x1, . . . , xn) = 0 only if the desired
formation is perfectly achieved, that is, when ‖xi −xj‖ = dk

ij , for all i �= j.
Now, given a collection of potentially useful formations, with instanta-

neous formation errors E1(t), E2(t), . . . , EM (t), we can let the system exe-
cute formation j whenever Ej < E i, for all i �= j. In other words, we will
always choose the formation with the smallest error.

An example of this strategy, where the agents switch between a line and a
triangular formation, is shown in Figure 6.9, together with the correspond-
ing error functions EL and ET ; here the subscripts L and T denote line and
triangle formations, respectively. In this example, we let the agent travel
towards the goal (located at (9, 9)). For this, they need to move through
a narrow passage defined by the objects located at (2, 3), (3, 2), (4, 3) and
(3, 4). A potential-based obstacle avoidance behavior deforms the triangle
so that EL < ET and, accordingly, we make a transition to the line forma-
tion. When the agents arrive at the obstacle located at (5, 5) the obstacle
avoidance behavior puts the leading agent out of its current heading, result-
ing in ET < EL, and the agents make a transition back to the triangular
formation.

Now, it should be noted that this approach requires that all agents have
perfect knowledge of the (relative) positions of all other agents, that is, that
the interaction graph is a complete graph. If this is not the case, the total
formation errors cannot be directly computed by each agent. To overcome
this, we need to develop a decentralized, distributed version of the formation
selection algorithm, which is the topic of the next subsection.

6.5.2 The Decentralized Case

If global information is not available to all agents, we can introduce Eki (t)
as a measure of the kth formation error, as perceived locally by agent i, for
example,

Ek
i (t) =

∑
j∈N(i)

ωk
ij

(
‖xi(t) − xj(t)‖2 − (dk

ij)
2
)2

. (6.28)

It now seems like a reasonable strategy somehow to propagate and com-
pare these local errors throughout the network. To this end, we define ζki (t)
as an estimate of the kth global formation error, as estimated by agent i at
time t. (We note here that Ek

i (t) is a purely instantaneous evaluation of how

146 CHAPTER 6

let

⎧⎨⎩
ζk
i (0) = Ek

i (0),
ζ̇k
i (t) = −

∑
j∈Ni

(ζk
i (t) − ζk

j (t)), for i = 1, . . . , n, k = 1, . . . ,M.

(6.29)

How the agents should, in fact, act on this global error estimate is not
self-evident, and in the following paragraphs we will discuss some possible
strategies. These strategies involve selecting the formation with the smallest

1. instantaneous local error;
2. instantaneous global error estimate;
3. asymptotic global error estimate.

It should be noted that there is nothing that fundamentally dictates the “right”
approach to this problem. Rather, this choice should be application driven.
In essence, any dynamic formation selection mechanism is a hybrid control
strategy in that it involves switching discretely between different “contin-
uous” behaviors, that is, formation controllers. These transitions can be
defined in different ways depending on how the performance, or formation
error, is established for the network.

The most obvious and direct way in which a decentralized formation se-
lection mechanism can be defined is by simply letting each agent select
the formation with the smallest instantaneous error. As an example, con-
sider a situation in which we have two possible formations. This formation
strategy would thus result in agent i selecting to execute formation 1 (us-
ing the dynamics ẋi(t) = f1

i (x(t))) whenever E1
i < E2

i , and formation 2
(ẋi(t) = f2

i (x(t))) if this is not the case, as shown in Figure 6.10.

ẋi = f 1
i (x) ẋi = f 2

i (x)

E1
i < E2

i

E2
i < E1

i

Figure 6.10: A hybrid automaton implementing the strategy in which agent
i selects the dynamics ẋi(t) = f1

i (x(t)) over ẋi(t) = f2
i (x(t)) if E1

i < E2
i

This strategy suffers from an obvious flaw in that decisions are made (and
then executed) based on local properties, while global performance of the

FORMATION CONTROL 147

network is not taken into account. An agent switches its selection based on
its instantaneous error measurements but does not consider what the other
agents are trying to do, with the potential result that multiple agents may be
executing completely different formations, which may in turn be nonoptimal
from a global perspective yet locally beneficial. To address this issue, it
makes sense to take the locally estimated global performance measure ζki (t)
into account. And, since ζk

i (t) is updated using the agreement protocol, the
global error estimate will converge to the average of the initial local errors.
Thus, it makes sense to let agent i execute ẋi(t) = fk

i (x(t)) if ζk
i (t) < ζ�

i ,
for all � = 1, . . . ,M, � �= k.

But there is a caveat with this strategy in that agents must be able to com-
municate with each other to transmit their global error estimates. Moreover,
a problem that persists is that the agents act instantaneously, with the possi-
ble result that they may end up switching at different time instances as well
as to different formations. As such, it might be more desirable to develop
strategies where the agents spend more time “thinking” than “moving.”

By letting the agents wait a certain, prespecified time before transitioning
between formations, the (potentially) undesirable, instantaneous nature of
the previous strategies is avoided. The main idea is to let the agents “wait”
until (6.29) converges before taking action. Since the convergence is asymp-
totic, this means that, in theory, the agents have to wait an infinite amount of
time. However, we can cap this by instead defining a convergence threshold
which gives rise to a finite “convergence time” Tconv.

Assuming that the network is connected and static, (6.29) can be rewrit-
ten in matrix form, which yields ξ̇k(t) = −L(G)ξk(t), where, as before,
L(G) is the graph Laplacian of the underlying interaction topology. As
shown in Chapter 3, ξk(t) asymptotically approaches ζ̄k1, where, ζ̄k =
1
n

∑n
i=1 ζk

i (0).
For static, undirected graphs, a direct consequence of Theorem 3.4 in

Chapter 3 is that

‖ζk
i (t) − ζ̄k1‖ ≤ ‖ζk

i (0) − ζ̄k1‖e−λ2(L(G))t for all t ≥ 0. (6.30)

If ζk
i (0) is bounded through ‖ζk

i (0) − ζ̄k1‖ ≤ κ for some known constant
κ > 0, we define a convergence threshold as ‖ζk

i (t) − ζ̄k1 ‖≤ ε for some
ε > 0. It then directly follows that

Tconv ≥ 1
λ2(L(G)) ln(κ

ε)
. (6.31)

148 CHAPTER 6

If k = 2, we can, as before, let ẋi(t) = f1
i (x) if ζ1

i (t) < ζ2
i (t) and

ẋi(t) = f2
i (x) otherwise, as seen in Figure 6.11. The price one has to

pay for achieving simultaneous and delayed (as opposed to instantaneous)
transitions is that the agents must somehow keep track of time in that they
are required to wait Tconv time units and then select a formation.

If ε is small enough, all agents will not only switch at the same time, but
will select the same formation. However, as they move around (waiting for
Tconv), the environment may change. This observation leads to the incorpo-
ration of new data into the global performance estimates of the network.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋi = f 1

i (x)

ζ̇k
i = −∑

j∈N(i)(ζ
k
i − ζk

j)

τ̇ = 1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ẋi = f 2

i (x)

ζ̇k
i = −∑

j∈N(i)(ζ
k
i − ζk

j)

τ̇ = 1

ζ2 < ζ1

and
τ ≥ Tconv

⎧⎨⎩ ζk
i := Ek

i

τ := 0

⎧⎨⎩ ζk
i := Ek

i

τ := 0

ζ1 < ζ2

and
τ ≥ Tconv

Figure 6.11: A transition between formations occurs when the guard condi-
tions are met (ζk

i < ζ�
i and τ ≥ Tconv) at which point the states are reset to

ζk
i = Ek

i (new error estimate) and τ = 0 (waiting time reset).

In the context of formation selection, this new information may simply
arrive in the form of an agent’s instantaneous local formation error. Thus,
we modify the update equation for the local estimate of the global error as,

ζ̇k
i (t) = −

∑
j∈N(i)

((ζk
i (t) − ζk

j (t)) + F (Ek
i (t), ζk

i (t))),

where F (Ek
i (t), ζk

i (t)) represents an insertion of the current instantaneous
local error, Ek

i (t), associated with agent i’s local perception of how well
formation k is being maintained. But, it is not entirely clear how this new,
current information should be inserted into the agreement protocol to estab-
lish the correct form of the function F (Ek

i (t), ζk
i (t)).

If we let Ek(t) = (Ek
1 (t), . . . , Ek

n(t))T , we see that the average error as-
sociated with formation k, as perceived by the different agents, is simply
(1/n)1T Ek. What we would like an estimation algorithm to do is to make
the individual beliefs about the global performance of a particular formation
approach, this (time-varying) average.

FORMATION CONTROL 149

In other words, if ζk(t) = (ζk
1 (t), . . . , ζk

n)T , we would like

eζk(t) = ζk(t) − 1
n
11T Ek(t) → 0 as t → ∞. (6.32)

The first approach to the distributed performance estimation problem is
to use a proportional estimator, such as⎧⎨⎩ ẇk

i (t) = −γwk
i (t) −

∑
j∈N(i)

(ζk
i (t) − ζk

j (t)),

ζk
i (t) = wk

i (t) + Ek
i (t),

(6.33)

for i = 1, 2, . . . , n, where wk
i (t) is the so-called estimator state and γ > 0

is the rate at which new information is introduced. Again, ζki (t) is agent i’s
local estimate of the global error associated with formation k, it is initialized
as before by letting ζk

i (0) = Ek
i (0).

Rewriting (6.33) yields

ẇk(t) = −(γI + L(Gf))wk(t) + L(Gf)Ek(t), (6.34)

where Gf is the underlying formation graph.

Lemma 6.20. Let Gf be a connected graph. If wk(t) satisfies (6.34) then

1
n
11T wk(t) = e−γt 1

n
11T wk(0).

Proof. We have

1
n
11T ẇk(t) = −γ

1
n
11T wk(t) − 1

n
11T L(Gf)(wk(t) − Ek(t)).

Now, since 1T L(Gf) = (L(Gf)1)T = 0, we directly get that

1
n
11T wk(t) =

1
n
11T e−γtwk(0),

and the statement of the lemma follows.

Now, we observe that we can rewrite eζk(t) in (6.32) as

eζk(t) = Πζk(t) − 1
n
11T wk(t) = Πζk(t) − e−γt 1

n
11T wk(0), (6.35)

where Π = I − 1
n11T is the disagreement projection operator. As a conse-

quence, we have that

‖eζk(t)‖ ≤ 1√
n
|1T wk(0)|e−γt + ‖Πζk(t)‖.

150 CHAPTER 6

Moreover, the disagreement vector Πζk satisfies

Πζ̇k(t) = −(γI + L(Gf))Πζk(t) + Π(γEk(t) + Ėk(t)),

so if we let V k(t) = (1/2)‖Πζk(t)‖2, we get

V̇ k(t) = ζk(t)T Π2ζ̇k(t)
=−γζk(t)T Π2ζk(t) − ζk(t)T L(Gf)ζk(t)

+ζk(t)T Π(γEk(t) + Ėk(t))

≤−(γ + ε)V k(t) + ‖γE(t)k + Ėk(t)‖
√

V k(t).

If the input Ek(t) is varying quickly, we have little hope of the system
converging. So, we assume that the input is slowly varying in the sense that
there is a µk > 0 such that

‖γEk(t) + Ėk(t)‖ ≤ µk for all t ≥ 0. (6.36)

Under this assumption, we have the inequality

V̇ k(t) ≤ −(γ + ε)V k(t) + µk
√

V k(t).

The right-hand side in the previous equation is negative if

V k(t) ≥ (µk)2

(γ + ε)2

and ε > 0. As a consequence, we have that

‖Πζk(t)‖ ≤
√

2µk

γ + ε
for all t ≥ 0. (6.37)

Theorem 6.21. Let Gf be a static, connected, undirected graph. If the input
is slowly varying in the sense of (6.36), then the proportional estimator in
(6.33) bounds the error as

limsupt→∞‖eζk(t)‖ ≤
√

2µk

γ + ε

for some ε > 0.

The proportional estimator does a reasonable job in terms of stabilization.
However, as could be expected, the error does not necessarily decay to zero.
For this, we need to introduce an integral action as well.

FORMATION CONTROL 151

In this final strategy, the new information is introduced into the individual
global estimates using a proportional-integral estimator as follows:⎧⎪⎪⎨⎪⎪⎩

ẇk
i (t) = −

∑
j∈N(i)

(ζk
i (t) − ζk

j (t)),

ζ̇k
i (t) = γ(Ek

i (t) − ζk
i (t)) −

∑
j∈N(i)

(ζk
i (t) − ζk

j (t) + wk
i (t) − wk

j (t))

(6.38)
for i = 1, 2, . . . , n. As before, wk

i (t) is the estimator state for agent i asso-
ciated with formation k. The advantage of this performance estimator lies in
the fact that the input Ek

i (t) does not directly affect ζk
i , and hence it provides

better filtering of noisy inputs through the integrating action.
Using the same technique as in the previous section, one can arrive at the

following result.

Theorem 6.22. Let Gf be a static, connected, undirected graph. If the input
is slowly varying in the sense of (6.36), then the proportional-integral es-
timator specified by (6.38) makes the asymptotic error arbitrarily small by
choosing the information rate γ > 0 sufficiently small.

6.6 ASSIGNING ROLES

Our discussion in §6.1.1 dealt with specifying the desired shape or target
geometry for the formation. Once a collection of agents are to achieve this
shape, one has to make a decision as to whether the identities of the indi-
vidual agents matter. If they do, the formation specification is said to come
with an assignment (encoded by the fact that the indices in the specification
need to correspond to particular indices associated with the actual agents).
If they do not, the formation specification is said to be assignment free.

The problem of determining who goes where in a formation is equivalent
to finding a suitable permutation over [n] = {1, . . . , n}, that is, to find a
bijection

π : [n] → [n]

that solves the formation problem

‖xπ(i) − xπ(j)‖ = dij for all i, j = 1, . . . , n, i �= j.

If one associates a cost with the assignment of agent j to target i as c(i, j),
for example, the distance agent j has to travel to establish the desired for-

152 CHAPTER 6

mation, the problem of finding the best assignment becomes

min
π

n∑
i=1

c(π(i), i),

which is a combinatorial optimization problem–with a potentially prohibitive
computational requirement for large formations. However, for such linear
assignment problems, the optimal assignment can in fact be efficiently com-
puted (with a computational complexity of O(n3)) using the so-called Hun-
garian method.

The Hungarian method is initialized as a weighted bipartite graph with
2n nodes (corresponding to agents and targets, respectively), given by G =
(V,E,w), where V = X ∪ Y (X = agents, Y = targets), E = X × Y ,
and wij is the weight associated with edge {vi, vj} ∈ E. Now, a matching
(assignment) M ⊆ E is a collection of edges such that d(i) ≤ 1 for all
vi ∈ V under M , that is, each vertex is incident to at most one edge in M .
We say that a matching M is complete if card(M) = n, that is, when every
agent has been assigned to a target; the assignment problem thus involves
finding the “best” such complete matching. In fact, the Hungarian method
maximizes the weights in the matching, so we can, for example, let the
weight wij = −c(i, j) to transform the original assignment problem to that
of finding a complete, maximum-weight matching.

In order to solve this, we need to introduce a vertex labeling � : V → R,
and we say that the labeling is feasible if

�(x) + �(y) ≥ wxy for all x ∈ X, y ∈ Y.

Based on a feasible labeling, we can form the equality graph G�(V,E�),
with the edge set given by E� = {{x, y} | �(x) + �(y) = wxy}, and we let
N�(x) = {y ∈ Y | {x, y} ∈ E�}.

Theorem 6.23 (Kuhn-Munkres). If � is feasible and M ⊆ E� is complete,
thenM is a maximum-weight matching.

Proof. Let M ′ ⊆ E be a complete matching. Its total weight is then

w(M ′) =
∑

{x,y}∈M ′
wxy ≤

∑
{x,y}∈M ′

�(x) + �(y) =
∑

{x,y}∈M

(�(x) + �(y))

=w(M).

The complete matching M′ satisfies w(M ′) ≤ w(M), and hence M is of
maximum-weight.

FORMATION CONTROL 153

It turns out that this result is all one needs to formulate the algorithm that,
roughly speaking, starts out with a feasible labeling � together with some
matching M ⊆ E�. Then the following steps are repeated until M is com-
plete: (1) if possible, increase the size of M ⊆ E�, (2) if not, improve �
to �′ such that E� ⊆ E�′ . Since at each step either M or E� is increased,
the process must terminate with a complete matching, that is, one with a
maximum-weight matching. More precisely, the algorithm is as follows:

Step 0
Let �(y) = 0, for all y ∈ Y, �(x) = maxy w(x, y) for all x ∈ X. (This step
provides an initial feasible labeling.)
Step 1
Find the equality graph E� and pick a matching M ⊆ E�. Pick unmatched
x ∈ X and set S = {x}, T = ∅.
Step 2
If N�(S) �= T increase (if possible) the matching M by picking any y ∈
N�(s)\T .
If y is unmatched, add {x, y} (where {x, y} ∈ E�) to M (and if needed,
update M further to keep it as a proper matching since x may already be
matched–this is always possible without reducing M) and go to Step 1 un-
less M is complete, at which point the algorithm is terminated.
If y is matched, for instance, to x′, let S = S ∪ {x′}, T = T ∪ {y}. Go to
Step 3.
Step 3
If N�(S) = T , update the labeling function � using

δ� = min
x∈S, y �∈T

{�(x) + �(y) − wxy}

as

�′(v) =

⎧⎨⎩ �(v) − δ� if v ∈ S,
�(v) + δ� if v ∈ T,
�(v) otherwise.

Update E� and go to Step 2.

This Hungarian algorithm provides a rather nice example of how graph-
based algorithms can be used to overcome seemingly intractable combi-
natorial problems, and it constitutes the basis for many other assignment
algorithms, centralized or distributed.

154 CHAPTER 6

SUMMARY

In this chapter, we explored the formation control problem. Among the host
of topics considered, we discussed different means of specifying formations
in terms of their scale, shape, relative state, and target role assignment. The
role of graph rigidity, particularly in formations specified by shapes, was
also examined. A number of control laws were then investigated, ranging
from linear, Laplacian-based controllers to nonlinear formation controllers
and controllers for unicycle agents. The question concerning what forma-
tion to select in the first place was also examined; we proposed to use an
error measure that dictates how well a particular formation has been kept.
This measure can then be estimated in a distributed fashion to obtain decen-
tralized formation selection mechanisms.

NOTES AND REFERENCES

The problem of specifying, achieving, and maintaining formations has a rich
history and a number of different control strategies have been proposed to
this end. Some of the works that we drew inspiration from in this chapter
appeared in the works of Lawton, Beard, and Young [144], Beard, Lawton,
and Hadaegh [17], Broucke [36], [37], Burkard [42], Desai, Ostrowski, and
Kumar [66], [65], Egerstedt and Hu [74], Muhammad and Egerstedt [165],
Eren, Belhumeur, Anderson, Morse [77], Jadbabaie, Lin, and Morse [124],
and Ögren, Egerstedt and Hu [180]. The basic premise behind graph-based
formation control has been explicitly discussed in Olfati-Saber and Mur-
ray [181], Dunbar and Muray [72], and by Broucke in [36],[37]. Examples
of various ways by which formations can be specified include deviations
from desired positions, as was the case in the work ofÖgren, Egerstedt, and
Hu [180], deviations from desired interrobot distances (for example as in
Jadbabaie, Lin, and Morse [124]), or as dissimilarities between graphs en-
coding the desired and actual formations, as was discussed in Ji and Egerst-
edt [126].

Our discussion of formation control for single and double integrator agents
parallels the work of Ren and Beard [204] and Sandhu, Mesbahi, and Tsuka-
maki [212], whereas for the linear time invariant agents, we have presented
the simplified version of the work of Fax and Murray [85] (which is con-
cerned with the normalized version of the Laplacian) and more specifically,
the paper by Lafferriere, Williams, Caughman, and Veerman [140]. The
notion of T transformations for formation control was examined in the pa-
per by Sandhu, Mesbahi, and Tsukamaki, which considered them in the
context of reconfigurable formation control laws. The section on forma-

FORMATION CONTROL 155

tion control of unicycles closely follows the work of Sepulchre, Paley, and
Leonard [214].

The networked control community in general, and formation control re-
searchers in particular, have drawn significant inspiration from interaction
rules in social animals and insects. Compelling examples include Couzin
[57], Gazi and Passino [95], and Grünbaum, Viscido, Parrish [107]. In par-
ticular, nearest neighbor-based formation control, for example as discussed
in Ferrari-Trecate, Buffa, and Gati [89], Ji and Egerstedt [126], Olfati-Saber
[185], Martı́nez, Cortés, and Bullo [151], and McNew and Klavins [153],
has a direct biological counterpart, as shown by Couzin in [56],[57].

Graph rigidity and persistence is discussed by Coxeter and Greitzer [58],
Eren, Whiteley, Anderson, Morse, and Belhumeur [78], Hendrickx, An-
derson, Delvenne, and Blondel [115], Gluck [100], Roth [208], Tay and
Whiteley [234], and Laman [141], from which the definitions and results
discussed in this chapter were taken. To generate minimally rigid graphs,
one can utilize the pebble game algorithm by Jacobs and Hendrickson [123],
leading to an O(n2) algorithm for constructing minimally rigid graphs.

SUGGESTED READING

See Burkard [42] and Kuhn [137] for further details of the linear assign-
ment problem. For an excellent discussion of formation control in biology,
we recommend the intriguing paper by Couzin [56]. A good introduction
to rigidity is given by Roth in [208], and the basics behind graph-based
formation control are presented in an easily digested manner by Lawton,
Beard, and Young [144]. For formation control for unicycles we recom-
mend the expository paper by Paley, Leonard, Sepulchre, Grünbaum, and
Parrish [189].

EXERCISES

Exercise 6.1. Recall that a condition for rigidity is that

(xi − xj)T (ẋi − ẋj) = 0, for all {vi, vj} ∈ E.

Show that this relation can be rewritten as

R(q)q̇ = 0,

156 CHAPTER 6

where

q =

⎡⎢⎣ x1
...

xn

⎤⎥⎦ ;

the matrix R is called the rigidity matrix. It is known that when p = 2
and xi ∈ Rp, i = 1, . . . , n, a necessary and sufficient condition for the
system to be (generically) rigid is that rank R(q0) = 2n − 3, where q0 is
feasible with respect to the edge-distance constraints. For p = 2 which of
the following formations are (generically) rigid?

G1

G2

G3

Exercise 6.2. Construct an example of a rigid framework that is not in-
finitesimally rigid.

Exercise 6.3. Show that if G contains cycles, the system ε̇(t) = −D(G)T u(t)
is uncontrollable. However, show that if the initial conditions ε(0) = zr −
z(0) satisfy the cycle constraints then the control u(t) = D(G)ε(t) is stabi-
lizing (with respect to the origin).

Exercise 6.4. Prove Theorem 6.17 using LaSalle’s invariance principle.

FORMATION CONTROL 157

Exercise 6.5. If a team of robots is to drive in formation while avoiding ob-
stacles as well as progressing toward a goal location, one can, for example,
let the individual agent dynamics be given by

ẋi = Fform + Fgoal + Fobst,

where Fform is used to maintain formations. However, Fgoal is used to steer
the robot towards a goal and Fobst is used to have it avoid obstacles. Find
reasonable Fgoal and Fobst and simulate your proposed solution. The final
result should look something like the figure below.

2 1 0 1 2 3 4 5 6 7

2

1

0

1

2

3

4

5

6

7

2 1 0 1 2 3 4 5 6 7

2

1

0

1

2

3

4

5

6

7

2 1 0 1 2 3 4 5 6 7

2

1

0

1

2

3

4

5

6

7

2 1 0 1 2 3 4 5 6 7

2

1

0

1

2

3

4

5

6

7

Exercise 6.6. Given a static, undirected, connected graph, let

ẋi = −
∑

j∈N(i)

(‖xi − xj‖ − kij)(xi − xj),

where kij = kji is the desired separation between agents i and j. If the
desired interagent separations are feasible, show that the dynamics above is
locally stable when ‖xi − xj‖ ≈ kij .

Exercise 6.7. Using the formation controller in the previous question, ex-
plain what happens if the specification is not feasible, that is, no locations
exist that satisfy the desired interagent distances.

158 CHAPTER 6

Exercise 6.8. How does the stability analysis for the formation control in
§6.4 of linear time-invariant agents extend to the case when the dimension
of the state-space for each agent is larger that one?

Exercise 6.9. Simulate the formation control law in §6.4 for one-dimensional
single, double, and linear time invariant agents and provide a simulation ex-
ample of stable and unstable formations.

Exercise 6.10. Use the algorithm proposed in Theorem 6.19 to simulate
convergence to a (5, 10)-pattern for a group of 10 unicycles interacting over
the cycle graph. Comment on the local nature of the algorithm’s conver-
gence by choosing different initial conditions.

Exercise 6.11. Prove Lemma 6.10.

Exercise 6.12. Prove Theorem 6.19.

Exercise 6.13. Find the T transformations between each pair of the di-
graphs shown below.

(a) (b) (c) (d)

Chapter Seven

Mobile Robots

“Nothing is more practical
than a good theory.”

— Ludwig Boltzmann

This chapter focuses on the question of how to control and coordinate mo-
bile nodes subject to the type of interaction constraints normally associated
with mobile robots. In particular, we discuss how the use of ∆-disk prox-
imity graphs as the underlying interaction topologies affects the control de-
sign choices. For instance, it is no longer possible to use a linear agreement
protocol to solve the rendezvous problem since this protocol may render
an initially connected network disconnected. Instead we discuss the use of
nonlinear interaction laws for ensuring that the network stays connected.
This is discussed for both the rendezvous problem and the formation con-
trol problem. Moreover, the issue of graph-based sensor coverage using
mobile sensing nodes is discussed in the context of geometrically induced
graph-triangulations.

Arguably, a large portion of this book can be thought of as being about teams
of networked mobile robots. However, in the previous chapters we have
thought of the underlying graph structure as being either static or dynamic
without explicit geometric conditions on the existence of edges between
vertices. In this chapter, we focus on the situation in which the edges have
a direct, geometric interpretation in terms of limiting sensing capabilities,
as is the case when the network consists of mobile robots. In particular, we
will focus on the case when the graph is a ∆-disk proximity graph, that is,
where

{vi, vj} ∈ E ⇔ ‖xi − xj‖ ≤ ∆.

For example, if the robots are equipped with omnidirectional range sensors,
such as sonar rings, they can only detect neighboring robots that are close
enough. It should be noted that such graphs are dynamic in nature, as edges

160 CHAPTER 7

may appear or disappear when agents move in or out of the sensing (or
communication) range of each other.

7.1 COOPERATIVE ROBOTICS

What makes the multirobot problem challenging is that the agents’ move-
ments can no longer be characterized by purely combinatorial interaction
conditions. Instead, the coupling between geometry and combinatorics must
be taken into account. However, as the agreement protocol describes viable
means of making networked agents achieve a common value in a decentral-
ized manner, it makes sense to modify this protocol to take the geometric
range constraints into account in an explicit manner. We will pursue this en-
deavor for a suite of problems, including rendezvous and formation control.

To be able to define geometrically constrained agreement protocols, we
will need to change the format of the protocol slightly. As the focus of
this chapter is on coordination, that is, on interaction models and high-level
control strategies rather than on nonlinear vehicle models, we keep the dy-
namics of each individual agent as a single integrator

ẋi(t) = ui(t), i = 1, . . . , n, (7.1)

where xi ∈ Rp for i = 1, . . . , n. Let us first say a few words about the
case when the underlying interaction graph is static. In this case, prede-
fined, fixed links have been established between the agents, and these links
are assumed to be available throughout the duration of the movement. We
associate a static interaction graph (SIG) G = (V,E) to this network by
letting the V = {v1, . . . , vn} represent the group, and the static edge set
E ⊆ [V]2 is the unordered pairs of agents, with {vi, vj} ∈ E if and only if
an interaction link exists between agents i and j. Now, what we understand
by a limited information, time-invariant, decentralized control law in (7.1)
is a control law of the form

ui(t) =
∑

j∈Nσ(i)

f(xi(t) − xj(t)), (7.2)

where Nσ(i) is a subset of the neighbors of node i in G; the symmetric
indicator function σ(i, j) = σ(j, i) ∈ {0, 1} determines whether or not
the information available through edge {vi, vj} ∈ G should be taken into
account, with

j ∈ Nσ(i) ⇔ {vi, vj} ∈ E(G) and σ(i, j) = 1. (7.3)

In other words, just because two nodes are “neighbors” it does not follow
that they are “friends.” Along the same lines, the decentralized control law

MOBILE ROBOTS 161

f(xi − xj) is assumed to be antisymmetric, that is, for all t,

f(xi(t) − xj(t)) = −f(xj(t) − xi(t)) for all {vi, vj} ∈ E. (7.4)

A few remarks about these particular choices of control and indicator
functions are in order. First, the reason we only allow the function f in
(7.4) to depend on the relative states among interacting agents is that this
might be the only type of information available using range-based sensors.
In this case, agent i simply measures the position of agent j relative to its
current state. Second, we insist on having agents be homogeneous in that
the same control law should govern the motion of all agents. This restric-
tion is quite natural–and arguably necessary–when considering large-scale
networks, where it quickly becomes unmanageable to assign and keep track
of individual control laws. Such restrictions have natural consequences. For
example, it follows that the centroid of the system (7.1), the average of the
agents’ states while adopting control laws satisfying (7.2), remains constant
during the evolution of the system.

Now, let the p-dimensional position of agent i be given by

xi(t) = [xi,1(t), . . . , xi,p(t)]T , i = 1, . . . , n,

and let x(t) = [x1(t)T , . . . , xn(t)T]T . We can then define the component-
wise operator as

c(x(t), j) = [x1,j(t), . . . , xn,j(t)]T for j = 1, . . . , p.

Using this notation, the standard agreement protocol from Chapter 3 as-
sumes the form

d

dt
c(x(t), j) = −L(G)c(x(t), j), j = 1, . . . , n, (7.5)

where L(G) = D(G)D(G)T is the graph Laplacian and D(G) is the inci-
dence matrix of G associated with one of its orientations. And, as we have
seen in Chapter 3, it follows that if G is connected, then c(x, j) asymptoti-
cally approaches span{1}. Moreover, since c(x, j)T c(x, j) is a Lyapunov
function for the system (7.5), for any connected graph G, the control law

d

dt
c(x(t), j) = −L(G(t))c(x(t), j) (7.6)

drives the system to span{1} asymptotically as long as the graph trajec-
tory G(t) is connected for all t ≥ 0. As such, by applying the control law
in (7.5) to a dynamic interaction graph (DIG), G(t) = (V,E(t)), where
{vi, vj} ∈ E(t) if and only if ‖xi(t)− xj(t)‖ ≤ ∆, we get a system behav-
ior that seemingly solves the rendezvous problem, that is, the problem of

162 CHAPTER 7

driving all robots to the same location. However, the success of the control
law (7.5) hinges on the connectedness of the underlying graph at all times.
Unfortunately, this property has to be assumed rather than proved. Figure
7.1 shows an example where connectedness is lost when (7.6) is used to
control a system whose network topology is a ∆-disk proximity DIG. In

10 5 0 5 10
2

0

2
0 sec

5 0 5
2

0

2
0.1sec

5 0 5
2

0

2
0.2sec

5 0 5
2

0

2
0.3sec

5 0 5
2

0

2
0.4sec

5 0 5
2

0

2
0.5sec

5 0 5
2

0

2
0.6sec

5 0 5
2

0

2
0.7sec

5 0 5
2

0

2
0.8sec

5 0 5
2

0

2
0.9sec

Figure 7.1: A progression where connectedness is lost even though the ini-
tial graph is connected (∆ = 4)

the subsequent sections, we will show how the connectedness assumption
can be enforced by modifying the control law (7.5) while ensuring that the
resulting control laws are still based solely on local information- as is char-
acterized by (7.2).

7.2 WEIGHTED GRAPH-BASED FEEDBACK

In this section, we will restrict the interaction graphs to be static, that is, we
will only study the SIG case in which the behavior of the multiagent system
is defined through a fixed network topology. In particular, we will show how

MOBILE ROBOTS 163

the introduction of nonlinear edge weights can be used to establish certain
invariance properties. To arrive at the desired invariance properties, we will
first investigate decentralized control laws of the form

σ(i, j) = 1,
f(xi(t) − xj(t)) = −w(xi(t) − xj(t))(xi(t) − xj(t))

(7.7)

for all {vi, vj} ∈ E(G), where t ≥ 0 and w : Rp → R+ is a positive,
symmetric weighting function that associates a strictly positive and bounded
weight to each edge in the SIG. This choice of decentralized control law
leads to

ẋi(t) = −
∑

j∈N (i)

w(xi(t) − xj(t))(xi(t) − xj(t)), (7.8)

which can be rewritten as
d

dt
c(x, j) = −D(G)W (x)D(G)T c(x, j), j = 1, . . . , p, (7.9)

where W (x) = Diag([w1(x), . . . , wm(x)]T) ∈ Rm×m, m = card(E) is
the total number of edges in the graph (the size of the graph), and each edge
is identified by one unique index in the set {1, . . . ,m}.

We can thus define the state-dependent, weighted graph Laplacian as

Lw(x) = D(G)W (x)D(G)T . (7.10)

It is straightforward to establish that as long as the graph is connected, the
matrix Lw(x) remains positive semidefinite, with only one zero eigenvalue
corresponding to the null space span{1}. Now, given a critical distance δ,
we will show that, using appropriate edge weights, the edge lengths never
go beyond δ if they start out being less than δ − ε, for some arbitrarily
small ε ∈ (0, δ). For this, we need to establish some additional notation. In
particular, given an edge {vi, vj} ∈ E, we let �ij(x) denote the edge vector
between the agents i and j, that is, �ij(x) = xi − xj . Moreover, we define
the ε-interior of a δ-constrained realization of a SIG G as

Dε
G,δ = {x ∈ Rpn | ‖�ij‖ ≤ δ − ε for all {vi, vj} ∈ E}.

An edge tension function Vij , can then be defined as

Vij(δ, x) =

{
‖�ij(x)‖2

δ−‖�ij (x)‖ if {vi, vj} ∈ E,

0 otherwise,
(7.11)

with

∂Vij(δ, x)
∂xi

=

{
2δ−‖�ij (x)‖

(δ−‖�ij (x)‖)2 (xi − xj) if {vi, vj} ∈ E,

0 otherwise.
(7.12)

164 CHAPTER 7

Note that this edge tension function–as well as its derivatives–is infinite
when ‖�ij(x)‖ = δ for some i, j, and as such, it may seem like an odd
choice for our formation control law. However, as we will see, we will actu-
ally be able to prevent the tension function from reaching infinity; instead,
we will examine its behavior on a compact set on which it is continuously
differentiable.

Let the total tension energy of G be defined as

V(δ, x) =
1
2

n∑
i=1

n∑
j=1

Vij(δ, x). (7.13)

Lemma 7.1. Given an initial position x0 ∈ Dε
G,δ, for a given ε ∈ (0, δ), if

the SIG G is connected then the set Ω(δ, x0) = {x | V(δ, x) ≤ V(δ, x0)} is
an invariant set under the control law

ẋi(t) = −
∑

j∈N (i)

2δ − ‖�ij(x(t))‖
(δ − ‖�ij(x(t))‖)2 (xi(t) − xj(t)). (7.14)

Proof. We first note that the control law in (7.14) can be rewritten as

ẋi(t) = −
∑

j∈N (i)

∂Vij(δ, x)
∂xi

= −∂V(δ, x)
∂xi

= −∇xiV(δ, x).

This expression may be illdefined since it is conceivable that the edge lengths
approach δ; as we will shortly show, this will not happen. In fact, assume
that at time τ we have x(τ) ∈ Dε′

G,δ for some ε′ > 0. Then the time deriva-
tive of V(δ, x(τ)) is

V̇(δ, x(τ)) =∇xV(δ, x(τ))T ẋ(τ)

=−
n∑

i=1

ẋi(τ)T ẋi(τ) (7.15)

=−
n∑

j=1

c(x(τ), j)T Lw(δ, x(τ))2c(x(τ), j),

where Lw(δ, x) is given in (7.10), with weight matrix W (δ, x) (on Ω(δ, x0))
as

W (δ, x) = Diag(wk(δ, x)), k = 1, 2, . . . ,m,

wk(δ, x) =
2δ − ‖�k(x)‖

(δ − ‖�k(x)‖)2 ,
(7.16)

MOBILE ROBOTS 165

where we have arranged the edges such that subscript k corresponds to edge
k. We will use this notation interchangeably with wij and �ij , whenever it
is clear from the context.

Note that for any ε′ bounded away from 0 from below and from δ from
above, and for any x ∈ Dε′

G,δ, the time derivative of the total tension energy is
welldefined. Moreover, for any such x, V(δ, x) is non-negative and V̇(δ, x)
is nonpositive since Lw(δ, x) is positive semidefinite for all x ∈ Ω(δ, x0).
Hence, in order to establish the invariance of Ω(δ, x0), all that needs to be
shown is that, as V decreases (or at lest does not increase), no edge distances
will tend to δ. In fact, since Dε

G,δ ⊂ Dε′
G,δ if ε > ε′, we will have established

the invariance of Ω(δ, x0) if we can find an ε′ > 0 such that, whenever the
system starts from x0 ∈ Dε

G,δ, we can ensure that it never leaves the superset
Dε′

G,δ. In this venue, define

V̂ε = max
x∈Dε

G,δ

V(δ, x);

this maximum always exists and is obtained when all edges are at the maxi-
mal allowed distance δ − ε, that is,

V̂ε =
m(δ − ε)2

ε
,

which is a monotonically decreasing function as ε varies in the interval
(0, δ). What we will show next is that we can bound the maximal edge
distance that can generate this total tension energy, and the maximal edge
length �̂ε ≥ δ − ε is one where the entire total energy is contributed from
that one single edge. In other words, all other edges have length zero, and
the maximal edge length satisfies the identify

V̂ε =
�̂2
ε

δ − �̂ε

,

that is,

m(δ − ε)2

ε
=

�2
ε

δ − �ε
,

which implies that

�̂ε ≤ δ − ε

m
< δ.

Hence �ε is bounded away from above by δ; moreover it is bounded from
above by a strictly decreasing function as ε varies in the interval (0, δ).

166 CHAPTER 7

Hence, as V decreases (or at least is nonincreasing), no edge distances will
tend to δ, which completes the proof.

The invariance of Ω(δ, x0) shown above now leads to the main SIG theo-
rem.

Theorem 7.2. Consider a connected SIG, G, with initial condition x0 ∈
Dε

G,δ and a given ε > 0. Then the multiagent system under the control law
(7.14) asymptotically converges to the static centroid x̄.

Proof. The proof of convergence is based on LaSalle’s invariance principle
(see Appendix A.3). Let Dε

G,δ and Ω(δ, x0) be defined as before. From
Lemma 7.1, we know that Ω(δ, x0) is invariant with respect to the dynamics
(7.14). We also note that span{1} is Lw(δ, x)-invariant for all x ∈ Ω(δ, x0).
Hence, due to the fact that V̇(δ, x) ≤ 0, with equality only when c(x(t), j) ∈
span{1}, for all j ∈ {1, . . . , p}, convergence to span{1} follows.

Next we need to show that the agents converge to the centroid. The cen-
troid at time t is given by

x̄(t) =
1
n

n∑
i=1

xi(t),

and the component-wise dynamics of the centroid is

d

dt
c(x(t), j) =

1
n
1T d

dt
c(x(t), j) = − 1

n
1T Lw(δ, x(t))c(x(t), j).

Since 1T Lw(δ, x(t)) = (Lw(δ, x(t))1)T = 0 for all t and x ∈ Ω(δ, x0),
we directly have that ˙̄x(t) = 0, that is, the centroid is static and entirely
determined by the initial condition x0. As such, we can denote the centroid
by x̄0. We note that this is a special case of the observation that the centroid
is static under any control law of the form (7.2).

Now, let ξ̄ ∈ Rn be any point on span{1}, that is, ξ̄ = (ξ, . . . , ξ)T , for
some ξ ∈ R, that is consistent with the static centroid. This implies that

c(x, j) =
1
p

p∑
i=1

ξ = ξ,

and hence ξ has to be equal to the centroid itself. As a consequence, if xi
(i = 1, . . . , p) converged anywhere other than the centroid, we would have
a contradiction, and the proof now follows.

MOBILE ROBOTS 167

We note that the construction we have described above corresponds to
adding nonlinear state-dependent weights to the edges in the graph. One
could conceivably add weights to the nodes of the graph as well. Unless
these weights were all equal, they would violate the general assumption
(7.2). For the sake of completeness, however, we briefly discuss this situa-
tion in the next few paragraphs.

A node weight can be encoded in the dynamics of the system through the
weighting matrix D(x) as

dc(x, j)
dt

= −D(x)Lw(x) c(x, j), j = 1, . . . , p.

As long as D(x) is diagonal and positive definite for all x, with the diagonal
elements bounded away from zero, one has that, for all x ∈ Rpn,

N (D(x)Lw(x)) = span{1},

and the controller drives the system to the agreement subspace span{1}.
However, in this case the positions xi ∈ Rp, i = 1, . . . , n, approach the
same static point x̄D(x0) ∈ Rp, given by

x̄D(x0) =
1

trace (D−1(x0))

n∑
i=1

(d−1
i (x0))x0,i, (7.17)

where x0,i ∈ Rp, i = 1, . . . , n, is the initial location of agent i, di(x) is the
ith diagonal element of D(x). In what follows, we will show that a strategy
similar to that discussed in this section can be employed even if the graph is
allowed to change over time as the agents move around in their environment.

7.3 DYNAMIC GRAPHS

As already pointed out, during a maneuver, the interaction graph G may
change as the agents move in and out of each others’ sensory range. What
we focus on in this section is whether stability results, analogous to the
static case, can be constructed for the case when {vi, vj} ∈ E if and only if
‖xi − xj‖ ≤ ∆.

In fact, we intend to reuse the tension energy from the previous section,
with the particular choice of δ = ∆. However, since (7.16) implies that

lim
‖�k‖↑∆

wk(∆, ‖�k‖) = ∞,

where we use ↑ to denote the limit as the argument increases, we cannot
directly let the interagent tension energy affect the dynamics as soon as two

MOBILE ROBOTS 169

the graph G0,σ, induced by the initial indicator function value, is connected.
Then, by the control law

ui(t) = −
∑

j∈Nσ(i)

∂Vij(∆, x)
∂xi

, (7.19)

where σ(i, j) is given in (7.18), the group of agents asymptotically con-
verges to span{1}.

Proof. Since from Lemma 7.1 we know that no edges in G0
σ will be lost,

only two possibilities remain, that new edges will or will not be added to the
graph during the maneuver. If no edges are added, then we know from Theo-
rem 7.2 that the system will asymptotically converge to span{1}. However,
the only graph consistent with x ∈ span{1} is G0,σ = Kn (the complete
graph on n nodes), and hence no new edges will be added only if the initial
graph is complete. If this graph is not complete, at least one new edge will
be added. But, since G0,σ is an arbitrary connected graph, and connectivity
can never be lost by adding new edges, we conclude that new edges will
be added until the indicator induced graph, Gσ, is complete, and the system
converges asymptotically to span{1}.

As an example, consider Figure 7.3, showing a collection of agents, influ-
enced by the weighted control law (7.19), with the same initial position as in
Figure 7.1. What is different here is–as could be expected–that no links are
broken. Figure 7.4 depicts the same situation with the addition of a vertex-
weight matrix to the control law, causing the centroid to be no longer static.

7.4 FORMATION CONTROL REVISITED

In the previous sections, we showed a procedure for synthesizing control
laws that preserve connectedness while solving the rendezvous problem. In
what follows, we will follow the same methodology to solve the distributed
formation control problem. By formation control, we understand intera-
gent distance constraints that can be described by a connected edge-labeled
graph Gd = (V,Ed, d), where the subscript d denotes “desired.” Here, Ed

encodes the desired robot interconnections, that is, whether or not a desired
interagent distance is specified between two agents, and the edge labels

d : Ed → Rn
+

170 CHAPTER 7

10 5 0 5 10
2

0

2
0 sec

5 0 5
2

0

2
0.2sec

5 0 5
2

0

2
0.4sec

5 0 5
2

0

2
0.6sec

5 0 5
2

0

2
0.8sec

5 0 5
2

0

2
1sec

5 0 5
2

0

2
1.2sec

5 0 5
2

0

2
1.4sec

5 0 5
2

0

2
1.6sec

5 0 5
2

0

2
1.8sec

Figure 7.3: A progression is shown where connectedness is maintained dur-
ing the rendezvous maneuver. Depicted are the positions of the agents and
the edges in the DIG as a function of time.

define the desired relative interagent displacements, with ‖dij‖ < ∆ for
all i, j such that {vi, vj} ∈ Ed. Given a desired formation, the goal of the
distributed formation control is to find a feedback law such that:

F1. The dynamic interaction graph G(t) converges to a graph that is a
supgraph of the desired graph Gd (without labels) in finite time. In
other words, what we want is that Ed ⊆ E(t) for all t ≥ T , for some
finite T ≥ 0.

F2. The pairwise distances ‖�ij(t)‖ = ‖xi(t) − xj(t)‖ converge asymp-
totically to ‖dij‖ for all i, j such that {vi, vj} ∈ Ed.

F3. The feedback law utilizes only local information.

Analogous to the treatment of the rendezvous problem, we first present a
solution to the formation control problem, and then show that this solution

MOBILE ROBOTS 171

10 5 0 5 10
2

0

2
0 sec

5 0 5
2

0

2
0.2sec

5 0 5
2

0

2
0.4sec

5 0 5
2

0

2
0.6sec

5 0 5
2

0

2
0.8sec

5 0 5
2

0

2
1sec

5 0 5
2

0

2
1.2sec

5 0 5
2

0

2
1.4sec

5 0 5
2

0

2
1.6sec

5 0 5
2

0

2
1.8sec

Figure 7.4: A progression where connectedness is maintained
during the rendezvous maneuver, with vertex weight matrix
Diag([1 1 1 1 1 0.5 0.5 0.5 0.5]T)

does in fact preserve connectedness as well as guarantee convergence in the
sense of (F1) - (F2) above.

The solution will be based on a variation of the previously derived ren-
dezvous controller. In this direction, assume that we have established a set
of arbitrary targets τi ∈ Rn that are consistent with the desired interagent
distances, that is,

dij = τi − τj for all i, j such that {vi, vj} ∈ Ed.

As in the previous chapter, we can define the displacement from τi at time t
as

yi(t) = xi(t) − τi.

As before, we let �ij(t) = xi(t)−xj(t) and λij(t) = yi(t)−yj(t), implying
that for all t,

λij(t) = �ij(t) − dij .

172 CHAPTER 7

Now, under the assumption that Gd is a spanning graph of the initial inter-
action graph G, that is, V (Gd) = V (G) and Ed ⊆ E(G), we establish the
control law

ẋi(t) = −
∑

j∈NGd
(i)

2(∆ − ‖dij‖) − ‖�ij(t) − dij‖
(∆ − ‖dij‖ − ‖�ij(t) − dij‖)2

(xi(t) − xj(t) − dij).

(7.20)
The reason why this seemingly odd choice for a control law makes sense
is that we can, again, use the edge tension function V to describe the con-
trol law. In particular, using the following parameters in the edge tension
function

Vij(δ − ‖dij‖, y) =

{
‖λij‖2

∆−‖dij‖−‖λij‖ if {vi, vj} ∈ Ed,

0 otherwise,
(7.21)

we obtain the decentralized control law
σ(i, j) = 1,
f(xi(t) − xj(t)) = −∂Vij(∆−‖dij‖,y)

∂yi
,

for all {vi, vj} ∈ Ed. Along each individual dimension, the dynamics now
assumes the form

v
dc(x(t), j)

dt
=

dc(y(t), j)
dt

= −Lw(∆ − ‖d‖, y(t))c(y(t), j), j = 1, . . . , n,

where Lw(∆−‖d‖, y) is the graph Laplacian associated with Gd, weighted
by the matrix W (∆ − ‖d‖, y), and where we have used the convention that
the term ∆ − ‖d‖ should be interpreted in the following manner:

W (∆ − ‖d‖, y) = Diag(wk(∆ − ‖dk‖, y)), k = 1, 2, . . . , |Ed| ,

wk(∆,−‖dk‖, y) =
2(∆ − ‖dk‖) − ‖λk‖)
(∆ − ‖dk‖ − ‖λk‖)2

.

(7.22)
Here, again, the index k runs over the edge set Ed. Note that this construc-
tion allows us to study the evolution of yi(t) rather than xi(t) (i = 1, . . . , n);
we formalize this in the following lemma for static interaction graphs.
Lemma 7.4. Let the total tension energy function be

V(∆ − ‖d‖, y) =
1
2

n∑
i=1

n∑
j=1

Vij(∆ − ‖dij‖, y). (7.23)

If y0 ∈ Dε
Gd,∆−‖d‖, with Gd a (connected) spanning graph, then under the

assumption that the interaction graph is static, the set

Ω(∆ − ‖d‖, y0) = {y | V(∆ − ‖d‖, y) ≤ V0},

MOBILE ROBOTS 173

with V0 denoting the initial value of the total tension energy function, is an
invariant set under the control law in (7.20).

Proof. By the control law (7.20), we have

ẏi =−
∑

j∈NGd
(i)

∂Vij(∆ − ‖dij‖, y)
∂yi

=−∂V(∆ − ‖d‖, y)
∂yi

=−∇yiV(∆ − ‖d‖, y).

The nonpositivity of V̇ now follows from the same argument as in (7.15) in
the proof of Lemma 7.1. Moreover, for each initial y0 ∈ Dε

Gd,∆−‖d‖, the
corresponding maximal, total tension energy induces a maximal possible
edge length. Following the same line of reasoning as in the proof of Lemma
7.1, the invariance of Ω(∆ − ‖d‖, y0) follows.

Note that Lemma 7.4 states that if we can use Gd as a SIG, Ω(∆−‖d‖, y0)
is an invariant set. In fact, it is straightforward to show that if Gd is a span-
ning graph to the initial proximity ∆-disk DIG, then it remains a spanning
graph for the graphs G(x(t)) for all t ≥ 0.

Lemma 7.5. Given an initial condition x0 such that y0 = (x0 − τ0) ∈
Dε

Gd,∆−‖d‖, with Gd a connected spanning graph of G(x0), the group of
autonomous mobile agents adopting the decentralized control law (7.20)
are guaranteed to satisfy

‖xi(t) − xj(t)‖ = ‖lij(t)‖ < ∆ for all t > 0 and {vi, vj} ∈ Ed.

Proof. Consider a pair of agents i and j that are adjacent in Gd, and suppose
that ‖λij‖ = ‖yi − yj‖ approaches ∆−‖dij‖. Since Vij ≥ 0 for all i, j and
t > 0, and

lim
‖λij‖↑(∆−‖dij‖)

Vij = ∞,

implying that V → ∞, which contradicts Lemma 7.4. As a consequence,
‖λij‖ is bounded away from ∆ − ‖dij‖. This means that

‖�ij‖ = ‖λij + dij‖ ≤ ‖λij‖ + ‖dij‖ < ∆ − ‖dij‖ + ‖dij‖ = ∆,

and hence edges in Ed are never lost under the control law (7.20). In other
words, ‖lij(t)‖ < ∆, for all t ≥ 0, which in turn implies that connectedness
is preserved.

174 CHAPTER 7

We have thereby established that if Gd is a spanning graph of G(x0), then
it remains a spanning graph for G(x(t)) for all t > 0 (under certain assump-
tions on x0), even if G(x(t)) is given by a ∆-disk DIG. In the meantime,
since the control law (7.20) only takes pairwise interactions in Ed into ac-
count, we can view this dynamic scenario as a static situation, with the SIG
given by Gd. What remains to be shown is that the system in fact converges
in the sense of the formation control properties (F1) - (F3) as previously
defined. That condition F3 (decentralized control) is satisfied follows triv-
ially from the definition of the control law in (7.20). Moreover, we have
already established that condition F1 (finite time convergence to the appro-
priate graph) holds trivially as long as it holds initially, and what remains to
be shown is that we can drive the system in finite time to a configuration in
which condition F1 holds, after which Lemma 7.5 applies. Moreover, we
need to establish that the interagent displacements (defined for edges in Ed)
asymptotically converge to the desired relative displacements (F3), which is
the topic of the next theorem.

Theorem 7.6. Under the same assumptions as in Lemma 7.5, for all i, j,
the pairwise relative distances ‖�ij(t)‖ = ‖xi(t) − xj(t)‖ asymptotically
converge to ‖dij‖ for {vi, vj} ∈ Ed.

Proof. We first recall that Gd remains a spanning graph to the DIG. In view
of

dc(y, j)
dt

= −Lw(∆ − ‖d‖, y)c(y, j), j = 1, 2, . . . , p,

Theorem 7.2 ensures that for all j ∈ {1, . . . , n}, c(y, j) will converge to
span{1}. What this implies is that all displacements must be the same, that
is, that yi(t) = ζ, for all i ∈ {1, . . . , n}, where ζ ∈ Rp. But, this simply
means that the system converges asymptotically to a fixed translation away
from the target points τi, i = 1, . . . , n, that is,

lim
t→∞

yi(t) = lim
t→∞

(
xi(t) − τi

)
= ζ, for i = 1, . . . , n,

which in turn implies that

lim
t→∞

�ij(t) = lim
t→∞

(
xi(t) − xj(t)

)
= lim

t→∞

(
yi(t) + τi − yj(t) − τj

)
= ζ + τi − ζ − τj = dij

for all i, j for which {vi, vj} ∈ Ed, which completes the proof.

MOBILE ROBOTS 175

7.4.1 Hybrid Rendezvous-to-Formation Control Strategies

The last property that we must establish is whether it is possible to satisfy
condition F1, that is, to ensure that the initial ∆-disk proximity DIG con-
verges in finite time to a graph that has Gd as a spanning tree. If this is
achieved, then Theorem 7.6 would be applicable and condition F2 (asymp-
totic convergence to the correct interagent displacements) would follow. To
achieve this, we can use the rendezvous control law developed in the previ-
ous section for gathering all agents into a complete graph, of which trivially
any desired graph is a subgraph. Moreover, we need to achieve this in such
a manner that the assumptions in Theorem 7.6 are satisfied.

Let Kn denote the complete graph on n agents. Moreover, we will use
K∆

n to denote the situation in which the ∆-disk proximity graph is in fact a
complete graph, that is, a DIG that is a complete graph in which no pairwise
interagent distances is greater than ∆. This notation is potentially confusing
as graphs are inherently combinatorial objects while interagent distances are
geometric. To be more precise, we will use the notation G = K∆

n to denote
the fact that {

G = Kn,
�ij ≤ ∆ for all i �= j.

The reason for this construction is that, in order for Theorem 7.6 to be ap-
plicable, the initial condition has to satisfy

y0 = (x0 − τ0) ∈ Dε
Gd,∆−‖d‖,

which is ensured by making ε small enough. Moreover, since the rendezvous
controller (7.19) asymptotically achieves rendezvous, it will consequently
drive the system to Kε

n in finite time, for all 0 < ε < ∆. After Kε
n is

achieved, the controller switches to the controller (7.20), as depicted in Fig-
ure 7.5. However, this hybrid control strategy is only viable if the condition
that G = Kε

n is locally verifiable in the sense that the agents can decide for
themselves on when the synchronous mode switch should be triggered. In
fact, if an agent has n− 1 neighbors, all of which are within a distance ε/2,
it follows that the maximal separation between two of those neighbors is ε.1
Hence, when one agent detects this condition, it will trigger a switching sig-
nal (involving a one-bit broadcast communication to all its neighbors), and
the transition in Figure 7.5 occurs. Note that this might actually occur not at
the exact moment when G becomes Kε

n, but rather at a later point. Regard-
less, we know that this transition will in fact occur in finite time in such a
way that the initial condition assumptions of Theorem 7.6 are satisfied.

1This occurs when the agents are polar opposites on an n sphere of radius ε/2.

MOBILE ROBOTS 177

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

0sec 0.1sec

0.2sec 0.3sec

0.4sec 0.5sec

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Agent 1
Agent 2
Agent 3
Agent 4
Agent 5

Figure 7.6: Evolution of a formation process

180 CHAPTER 7

As such, the local interactions in a ∆-disk graph must be complemented by
more long-distance interactions, which we will pursue through the so-called
Gabriel and Voronoi graphs.

7.5.2 Near-Coverage Through Gabriel Graphs

The notion of a Gabriel graph was originally developed in the context of
geographic variation analysis. The basic idea behind the Gabriel graph is to
generate a proximity graph that is, to a large degree, a nearest neighbor in-
teraction graph. In the meantime, more long-distance interactions may also
be included in the structure. This mix of mainly local and a few global inter-
actions provides an effective way of addressing the combinatorial coverage
problem via Gabriel graphs.

Consider a graph whose vertices v1, . . . , vn correspond to physical, pla-
nar agents located at x1, . . . , xn ∈ R2. The Gabriel graph associated with
these agents is given by G = (V,E), where {vi, vj} ∈ E if and only if
the interior angle ∠(xi, xk, xj) is acute for all other points xk, as shown
in Figure 7.9. An equivalent way of defining the edge set is to say that
{vi, vj} ∈ E if and only if the circle of diameter ‖xi − xj‖, containing
both points xi and xj , does not contain any vertex in its interior. We now

xi

xj

(a)

xi

xj

xk

(b)

Figure 7.9: The acute angle test for establishing edges in the Gabriel graph.
In (a), {vi, vj} ∈ E since ∠(xi, xk, xj) is acute for all other nodes vk ∈ V .
This is not the case in (b), where, as can be seen, xk is inside the circle
defined by the two points xi and xj .

establish some basic results about Gabriel graphs.

Lemma 7.8. The nearest neighbor edge is always present in the Gabriel
graph, that is, if ‖xi − xj‖ < ‖xi − xk‖ for all k �= i, j, then {vi, vj} ∈ E.

Proof. Suppose n ≥ 2 and let vi ∈ V . Then there exists vj ∈ V such that
‖xi − xj‖ ≤ ‖xi − xk‖, for all k �= i, j. Now, pick an arbitrary vk ∈ V .

MOBILE ROBOTS 181

Since ‖xi −xj‖ ≤ ‖xi −xk‖, we have ∠(xi, xk, xj) ≤ ∠(xi, xj , xk). Thus
∠(xi, xk, xj) must be acute since we also have that

∠(xi, xk, xj) + ∠(xi, xj , xk) < π,

and the lemma follows.

Lemma 7.9. If {vi, vj} �∈ E then there exists vk such that xk is closer
to both xi and xj than xi and xj are to each other, that is, ‖xi − xk‖ <
‖xi − xj‖ and ‖xj − xk‖ < ‖xi − xj‖.

Proof. By definition, if {vi, vj} �∈ E then there exists vk ∈ V such that
∠(xi, xk, xj) ≥ π/2. From this, it directly follows that ‖xi − xk‖ < ‖xi −
xj‖ and ‖xj − xk‖ < ‖xi − xj‖.

These two lemmas basically state that Gabriel graphs do have a certain
nearest neighbor “flair” to them. They are not (in general) disk graphs;
they do, however, have other geometric properties. For example, Gabriel
graphs are planar; when drawn in the plane, they do not have edges that
cross (except of course at the vertices). This is important since as we have
previously seen, a perfect planar triangulation certainly is a planar graph as
well.

Theorem 7.10. Any Gabriel graph is planar.

Proof. The proof is done by contradiction. Suppose vi, vj ∈ V , {vk, v�} ∈
E for some distinct vertices such that the edges {vi, vj} and {vk, v�} cross
each other. Now, consider the quadrilateral defined by the vertices vi, vj , vk, v�.
Certainly at least one of the angles in this quadrilateral must be at least π/2;
without loss of generality, let ∠(x�, xi, xk) be such an angle. Then, by defi-
nition {v�, vk} �∈ E, which is a contradiction.

The last missing piece needed to start building up combinatorial coverage
structures from Gabriel graphs is to ensure that these graphs are connected.

Theorem 7.11. Any Gabriel graph is connected.

Proof. Let V1 and V2 be an arbitrary partition of the vertex set V , such that
V1 ∩ V2 = ∅. To show connectedness, it is enough to show that there is at
least one edge between these two vertex sets. Thus, let v1 ∈ V1 and v2 ∈ V2

be such that ‖x1 − x2‖ ≤ ‖x′
1 − x′

2‖ for any other vertices v′1 ∈ V1 and
v′2 ∈ V2. In other words, v1 and v2 are the two closest vertices on the two
vertex sets, respectively.

182 CHAPTER 7

Now, assume that {v1, v2} �∈ E. Then, by Lemma 7.9, there is a vertex
vi such that ‖x1 − xi‖ < ‖x1 − x2‖ and ‖x2 − xi‖ < ‖x1 − x2‖. If
vi ∈ V1, we thus have that vi is a point in V1 closer to v2, which contradicts
our selection of v1 and v2. Similarly, a contradiction is obtained if vi ∈ V2.
Thus, {v1, v2} ∈ E and the proof follows.

As a consequence, we have obtained a combinatorial structure with al-
most the correct topology for achieving combinatorial coverage, that is, per-
fect, planar triangulations. Some examples of Gabriel graphs are given in
Figure 7.10. However, it should be noted that even though these structures
are quite natural in terms of combining local and global properties, we do
not have guarantees that the resulting structures are perfect triangulations.
In order to make the Gabriel graphs in Figure 7.10 more appropriate for ad-
dressing the coverage problem, we need to move the vertices around, which
is the topic of the next few paragraphs.

(a) (b)

(c) (d)

Figure 7.10: The Gabriel graphs associated with 20 randomly placed nodes.
Note that none of these graphs are perfect planar triangulations even though
they seem like a good starting point for solving the coverage problem.

Using the notion of a Gabriel graph to determine potentially useful inter-
actions between agents, we can of course move the nodes around in such a
way that the desired structure emerges more clearly. What we would like

MOBILE ROBOTS 183

is to ensure a regular structure which can be achieved through an edge po-
tential guaranteeing that desired interagent distances are achieved. In this
direction, define the edge potential as

Uij =
1
2
(‖xi − xj‖ − ∆)2 for all {vi, vj} ∈ E, (7.24)

where ∆ is the desired interagent distance.
Following the discussion in Chapter 6 on formation control, the corre-

sponding control law becomes

ẋi(t) = −
∑

j∈N(i)

∇xiUij = −
∑

j∈N(i)

(‖xi(t) − xj(t)‖ − ∆)
‖xi(t) − xj(t)‖

(xi(t)−xj(t)).

(7.25)
It should be noted that as the agents move around, the neighborhood set will
change; a collection of examples of executing this control law are seen in
Figure 7.11. It is clear that we are close to achieving combinatorial coverage
by producing the desired triangulations.

(a) (b)

(c) (d)

Figure 7.11: Attempted combinatorial coverage using potential field-based
controllers together with Gabriel graph interaction topologies. The initial
networks are given by 20 randomly placed planar nodes, as in Figure 7.10.

184 CHAPTER 7

7.5.3 Voronoi-based Coverage Algorithms

In the previous section, we saw that by using a particular Gabriel graph
structure it was possible to get close to perfect triangulations. What was
needed to produce these structures was the ability to go beyond close-range
interactions and incorporate longer-range interactions if needed. These longer-
range interactions were based on the relative placements of the nodes. How-
ever, one can adjust this viewpoint by basing the longer-range interactions
on the areas covered by the sensor nodes directly. By doing so, a formula-
tion involving Voronoi partitions of the space emerges quite naturally.

As before, denote the (planar) area, over which the coverage task is de-
fined, as Ω ⊂ R2, which is assumed to be a closed, connected, and compact
set. Moreover, let the agents’ positions be denoted x1, . . . , xn. We can now
define a so-called tessellation of Ω as {Wi}, with sets Wi such that

n⋃
i=1

Wi = Ω,

Wi ∩ Wj = ∅, i �= j.

The interpretation here is that Wi is the region in Ω that agent i is responsible
for; we refer to this region as the ith agent dominance region.

If we let W denote the tessellation, and let x = (xT
1 , . . . , xT

n)T , we can
define a locational cost function

H(x,W) =
n∑

i=1

∫
Wi

‖q − xi‖2dq.

The interpretation of this function is that it divides the space Ω into the
Wi regions, and then parameterizes how well these regions are covered by
the agents, with the coverage quality (how well xi can sense the point q)
degrading quadratically as a function of ‖q − xi‖.

Intuitively, it makes sense to simplify the problem of minimizing H over
x and W if we, instead, assume that W is the Voronoi partition of Ω, that
is, W = V(x) = {Vi(x)}, where

Vi(x) = {q ∈ Ω | ‖q − xi‖ ≤ ‖q − xj‖ for all j �= i}.

In this formulation, we get the locational optimization problem in the
form of minimizing

HV(x) = H(x,V(x)) =
∫

Ω
min

i∈{1,...,n}
‖q − xi‖2dq.

MOBILE ROBOTS 185

The idea now is to use a gradient descent algorithm for moving the agents,
that is, to let

ẋi(t) = −∂HV (x)
∂xi

= −2
∫
Vi

(xi(t) − q)dq.

This can be further improved upon if we allow time-varying weights in the
gradient descent algorithm. In particular, if we set

ẋi(t) = − 1

2
∫
Vi

dq

∂HV (x)
∂xi

,

we get that

ẋi(t) = ρi(x(t)) − xi(t),

where ρi(x(t)) is the center of mass of the Voronoi cell i at time t.
A few things should be pointed out about this (seemingly) simple algo-

rithm. The first is that, for its computation, the Voronoi region Vi(x) must
be computed. For this, agent i needs not only to be able to do a certain
amount of geometry, but also to know the relative location of all agents
whose Voronoi cells are adjacent to Vi. This is where the (potentially) long-
range interactions are needed since there are no guarantees that, for exam-
ple, these agents are within a certain distance of each other. An example of
using this approach is shown in Figures 7.12 and 7.13. In Figure 7.12(a),
the initial positions of the agents are shown together with the corresponding
Voronoi region. In Figure 7.12(b), the interaction graph is shown. This type
of proximity graph is called a Voronoi graph, and the adjacency relationship
in the graph corresponds to Voronoi cells being adjacent. In Figure 7.13 the
final configuration is shown after running the gradient descent algorithm as
previously described, together with the Voronoi graph.

From Figure 7.13(a), we can also make the second observation about this
particular gradient descent algorithm. The final placement of the agents
corresponds to them being at the centroids of their particular Voronoi cells,
achieving a so-called central Voronoi tessellation. In fact, this way of mov-
ing the agents is very similar to an algorithm known as Lloyd’s algorithm
for obtaining such tessellations.

Even though the coverage in Figures 7.12 - 7.13 is perfect in the sense of
being a triangulation, no such guarantees can generally be given. However,
this construction constitutes another approach in which the underlying graph
structure combines short and long-range interactions in a natural way in
order to tackle the coverage problem.

186 CHAPTER 7

(a) (b)

Figure 7.12: The initial placement of the agents together with the corre-
sponding Voronoi partition (a) and the resulting Voronoi proximity graph
(b)

(a) (b)

Figure 7.13: The left figure shows the position of the agents after running
the gradient descent method over the locational cost function. As can be
seen, what is obtained is a central Voronoi tessellation. The corresponding
Voronoi proximity graph is given in the right figure.

As a final remark, it should be noted that this construction can be gen-
eralized in a number of ways. For example, instead of letting ‖q − xi‖2

denote the degradation of the sensing performance, any f(‖q − xi‖) with
f being nondecreasing and differentiable would do the trick. Also, one can
associate a density function over the mission space φ : Ω → R+ that cap-
tures the “event density” across the space. Using this notation, the locational

MOBILE ROBOTS 187

optimization problem becomes that of minimizing

H(x,W) =
n∑

i=1

∫
Wi

f(‖q − xi‖)φ(q)dq.

We note that the same gradient descent method as before is applicable in
this case.

SUMMARY

In this chapter, the underlying sensing geometry became an important aspect
of the control and coordination algorithms. In particular, we showed how the
introduction of nonlinear weighted agreement protocols could be employed
to ensure that the network does not become disconnected when each node
is a mobile robot with a limited effective sensing range. This was done for
both the rendezvous problem and the formation control problem. Extensions
to the mobile sensor coverage problem were then discussed in the context
of triangulations based on Gabriel graphs and central Voronoi tessellations.

NOTES AND REFERENCES

In this chapter, nonlinear weights were introduced in the agreement pro-
tocol, based mainly on the work of Ji and Egerstedt [126]. Linear time-
varying weights were used by Fax and Murray [86], Lin, Broucke, and Fran-
cis [147] (for continuous time), and Jadbabaie, Lin, and Morse [124], Ren
and Beard [202] (for discrete time). Nonlinear weights were also proposed
by Olfati-Saber and Murray [181] and Tanner, Jadbabaie, and Pappas [230].
In addition, a robust (in the sense of disturbance rejection) rendezvous algo-
rithm is presented by Cortés, Martı́nez, and Bullo in [55].

The formation control problem for limited sensing-range mobile robots
has also been extensively studied in the literature. Generally speaking, there
are two kinds of formation control approaches, the leader-follower approach
and the leaderless approach. In the leader-follower approach, either an agent
or a virtual leader is chosen as the leader, whose movement is constrained by
a predefined trajectory; the remaining agents simply track the leader while
obeying some coordination rules to keep the formation. A representative
set of works in this direction include those by Desai, Ostrowski, and Ku-
mar [66], Egerstedt, Hu, and Stotsky [73], Ögren, Egerstedt, and Hu [180],
and Leonard and Fiorelli [145]. The other approach to formation control is
the leaderless approach; see for example, the works by Balch and Arkin [14]
and Beard, Lawton, and Hadaegh [17]. Here the controller is typically given

188 CHAPTER 7

by a mixture of formation-maintenance, obstacle-avoidance, and trajectory-
following terms.

Since few mobile networks have a static network topology due to both
the movements of the individual nodes and temporal variations in the avail-
able communication channels, interest in networks with changing topolo-
gies has been growing rapidly. For example, Mesbahi proposed a dynamic
extension of the static graph in [155],[156],[157] to address network prob-
lems with time-varying topologies that are induced by the dynamic states
of the agents. Ren and Beard [202] find that under a dynamically chang-
ing interaction topology, if the union of the interaction graph across some
time interval contains a spanning tree at a sufficient frequency as the system
evolves, an information consensus is still achievable. An average consen-
sus problem is solved for switching topology networks by Olfati-Saber and
Murray [182], where a common Lyapunov function is obtained for directed
balanced graphs, based on a so-called disagreement function.

The terminology used in the latter parts of this chapter “just because two
nodes are neighbors it doesn’t follow that they are friends” appeared in a
paper by McNew and Klavins [152].

SUGGESTED READING

The use of Gabriel graphs is well explained in [217], while connectedness-
preserving formation control can be found in [126]. The section on Voronoi-
based coverage algorithms is taken in large part from the excellent paper
[151]. For a representative sample of multirobot systems using graph the-
ory see for example the pioneering works of Ando, Oasa, Suzuki, and Ya-
mashita [9], Fax and Murray [85], and Lin, Broucke, and Francis [147].

EXERCISES

Exercise 7.1. This chapter mainly dealt with ∆-disk graphs, that is, prox-
imity graph (V,E) such that {vi, vj} ∈ E if and only if ‖xi − xj‖ ≤ ∆,
where xi ∈ Rp, i = 1, . . . , n, is the state of robot i. In this exercise, we
will be exploring another type of proximity graph, namely the wedge graph.

Assume that instead of single integrator dynamics, the agents’ dynamics
are defined as unicycle robots, that is,

ẋi(t) = vi(t) cos φi(t),
ẏi(t) = vi(t) sin φi(t),
φ̇i(t) = ωi(t).

190 CHAPTER 7

Exercise 7.4. In Theorem 7.3, the edge tension energy wk(∆, ‖�k‖) → ∞
as ‖�k‖ approaches ∆ (from below). Explain why this is necessary if the
tension energy is not allowed to depend on n, that is, the number of agents.
Also, explain how this can be avoided if wk is allowed to depend on n.

Exercise 7.5. Show that in a planar triangulation with equidistant edge
lengths, the maximum degree is 6.

Exercise 7.6. What is the maximum degree in a planar Gabriel graph?

Exercise 7.7. Verify the identity (7.17).

Exercise 7.8. Assume that we have weighted edges in the graph, that is, we
have a weighted graph Laplacian LW . Show that, as long as the weights are
nonzero, the null space is not affected by the introduction of weights.

Exercise 7.9. How should the control laws in §7.3 be modified if the robots
have different sensing ranges, that is, ∆i �= ∆j , i �= j.

Exercise 7.10. In order to facilitate a transition from rendezvous to forma-
tion control, a broadcast scheme was employed in §7.3. Is it possible to
achieve such a synchronous transition in a decentralized manner if no com-
munications capabilities are present, that is, using sensing only.

Exercise 7.11. One way of achieving translationally invariant formations is
to let the desired position for agent i be ξi, and to run the control protocol

ẋi(t) = −
∑

j∈N(i)

((xi(t) − xj(t)) − (ξi − ξj)).

Now, consider two connected agents on the line. Assume that there is some
confusion about where the target positions really are. In particular, let agent
1 run the above protocol with ξ1 = 0 and ξ2 = 1. At the same time, agent
2 runs the protocol with ξ1 = 0 and ξ2 = 2. What happens to x1(t), x2(t),
and x1(t) − x2(t), as t → ∞?

Exercise 7.12. Explain why no a priori bound can be given on the edge
distances in Gabriel or Voronoi graphs.

Chapter Eight

Distributed Estimation

“It is not certain that everything is uncertain.”
— Blaise Pascal

In this chapter, we present two complementary areas of distributed esti-
mation, namely, distributed linear least squares and distributed Kalman
filtering over sensor networks. For the former case, the recursive least
squares algorithm is adapted for sensor networks modeled as undirected
graphs; in this venue, we provide necessary and sufficient conditions for
the convergence of the corresponding distributed algorithm. Subsequently,
we extend our analysis to networks that have a “clustered” structure and
consider pulsed intercluster updates. In this latter scenario, intercluster
communications occur every β time steps, with β a positive integer greater
than one, and the corresponding updates are held until the next update in-
stant. Finally, we turn our attention to distributed, discrete-time Kalman
filtering and expand on a few architectures of particular interest for sensor
networks.

Estimation theory is a truth-seeking endeavor; it is the scientific means of
designing processes by which a static or dynamic variable of interest can
be uncovered by processing a noisy signal that functionally depends on it.
Estimation is a rich discipline with a wide range of applications in signal
processing and control. Our emphasis in this chapter is naturally on the
distributed and networked aspects of certain discrete-time estimation algo-
rithms, namely, distributed linear least squares and distributed Kalman fil-
tering.

8.1 DISTRIBUTED LINEAR LEAST SQUARES

We start our discussion by examining how linear least squares can be viewed
and analyzed in the distributed setting. Estimators that are based on least
squares do not require a probabilistic assumption on the noise signal that
corrupts the underlying variable or the estimated state, and are therefore

192 CHAPTER 8

easily implementable and applicable for a broad class of estimation prob-
lems. The underlying model involves the observation of a linear function of
a variable θ ∈ Rq that is additively corrupted by noise v,

z = Hθ + v,

where z, v ∈ Rp and H ∈ Rp×q (p > q); we refer to each component
of the vector z as a measurement channel and H is the observation matrix
that is assumed to be of row rank q. The rank condition on H ensures that
the measurement channels are not entirely redundant. In a centralized set-
ting and absence of information about the noise statistics, the least squares
estimation proceeds by minimizing the cost function

J(θ)= (z − Hθ)T (z − Hθ) . (8.1)

Since J in (8.1) is a differentiable and convex function of the underlying
state θ, its optimal value is found by setting its gradient to zero, and declar-
ing its optimum, that is, the least squares estimate, as

θ̂ =
(
HT H

)−1
HT z. (8.2)

It is rather a nontrivial fact that the above framework can also be adopted
for finding optimal estimators in other settings, such as the maximum like-
lihood estimates or minimum variance Bayes estimates, when the distribu-
tions of the additive noise or that of the state are assumed to be Gaussian.
Thus, for example, when v is a zero-mean Gaussian noise with covariance
Σ, minimizing the weighted objective functional

J(θ)= (z − Hθ)T Σ−1 (z − Hθ) , (8.3)

leads to the optimal estimate

θ̂ =
(
HT Σ−1H

)−1
HT Σ−1z. (8.4)

Inclusion of the weighting matrix Σ−1 in (8.4), induced by the noise co-
variance, is motivated by the desire to skew the optimal estimate toward
measurements that are less uncertain.

DISTRIBUTED ESTIMATION 193

inter-sensor link

sensor #1 sensor #6

sensor #4

sensor #5

sensor #3

sensor #2

θ

Figure 8.1: Sensor networks estimating a random vector.

8.1.1 Least Squares over Sensor Networks

We now consider distributed least squares for the case when Σ = I in
(8.3) and leave the extension of our discussion for more general scenarios
as an exercise. In such a distributed setting, there are n sensors available
for making measurements, and the observation vector for the ith sensor,
1 ≤ i ≤ n, is given by zi ∈ Rpi×1; hence

zi = Hiθ + vi,

where Hi ∈ Rpi×q and zi = Hiθ ∈ Rpi×1; see Figure 8.1. Consider
next the integration of the observation matrices Hi (i = 1, 2, · · · , n) as the
equivalent centralized observation matrix H ∈ Rp×q, as

H = [H1;H2; . . . ; Hn] , (8.5)

where p =
∑n

i=1 pi and the “;” operation denotes vertical concatenation of
matrices and vectors.1 With respect to the matrix H , the centralized least
squares estimator in (8.2) can now be written as

θ̂ =

(
n∑

i=1

HT
i Hi

)−1(n∑
i=1

HT
i zi

)
, (8.6)

provided that the additive noise signals are statistically independent.
The additive nature of (8.6) suggests that if each sensor provides the raw

measurement zi to the fusion center which has prior knowledge of each ob-
servation matrix Hi, then the fusion center can efficiently find the estimate
θ̂ (8.6). However, due to scalability, modularity, and fault tolerance, it might
be desirable to compute (8.6) without including a fusion center. As we will

1A Matlab notation.

194 CHAPTER 8

see shortly, the agreement protocol of Chapter 3 provides a convenient av-
enue for developing a distributed least squares algorithm that utilizes the
network as the means of computing the estimate θ̂ without a fusion center.

Let us first consider the proposed algorithm for the simplest scenario,
namely, in the context of estimating a scalar variable. Specifically, our task
is to estimate a scalar variable θ ∈ R, based on the noisy observations,
via a distributed algorithm operating on the measurements zi = θ + vi,
i = 1, 2, . . . , n. In this case, (8.6) can be used to deduce that

θ̂ =
1
n

n∑
i=1

zi. (8.7)

The form of (8.7) now calls for the applicability of the agreement protocol
as a mechanism for computing the solution of the least squares problem in
a distributed way. In this direction, consider the interconnection topology
between the different sensors abstracted in terms of the graph G = (V,E),
with V and E representing, respectively, the sensors and the ability of a
sensor pair to interchange their respective intermediate estimates. Moreover,
we let

W = Diag ([w1, . . . , wm]T), (8.8)

where wi > 0 is the weight on the ith edge of the graph, indexed con-
sistently with the column ordering in the corresponding incidence matrix
D(G).2 Next, consider the iteration for the ith sensor as

θ̂i(k + 1) = θ̂i(k) + ∆
∑

j∈N(i)

wij(θ̂j(k) − θ̂i(k)), (8.9)

where θ̂i(k) is the estimate of the variable θ by sensor i at time instant k and
∆ ∈ (0, 1) is the step size for the update scheme (8.9); we will have more
to say on the selection of ∆. Define the weighted Laplacian of G as

Lw(G) = D(G)WD(G)T , (8.10)

and set

Mw(G) = I − ∆Lw(G). (8.11)

A convenient terminology associated with the weighted Laplacian (8.10)
is that of generalized degree of vertex i, dw(i), defined as the sum of the
weights of the edges incident on i,

dw(i) = [Lw(G)]ii. (8.12)

2Thus wj refers to the weight on the jth edge, whereas wij refers to the weight on the
edge connecting vertices i and j.

DISTRIBUTED ESTIMATION 195

Using a matrix-vector notation, the iteration (8.9) can be written as

θ̂(k + 1) = Mw(G) θ̂(k),

with θ̂ = [θ̂1, θ̂2, . . . , θ̂n]T . Hence

θ̂(k) = Mw(G)k θ̂(0), k = 1, 2, . . . , (8.13)

where θ̂(0) is the “prior estimate” of θ at the initialization of the estimation
process. The convergence of this iterate therefore depends on the behavior
of the powers of the matrix Mw(G), which in turn depends on its spectral
radius. The following lemma states conditions under which the right-hand
side of (8.13) converges to a value that has statistical significance.

Lemma 8.1. Consider the sequence (8.13), arbitrary initialized as

θ̂(0) = [θ̂1(0), θ̂2(0), . . . , θ̂n(0)]T ,

with θ̂i(k) denoting the estimate of sensor i of variable θ at time instance k.
Then

lim
k→∞

θ̂(k) =

(
1
n

n∑
i=1

zi

)
1

if and only if the underlying sensor network is connected and

ρ(Lw(G)) <
2
∆

, (8.14)

where ρ(Lw(G)) is the maximum eigenvalue of Lw(G) in absolute value.3

Proof. We first observe that the spectrum of the matrix Mw(G) (8.11) is
given by the set

{1 − ∆λi(Lw(G)); i = 1, 2, . . . , n} ,

where λi(Lw(G)) is the ith eigenvalue of Lw(G). Moreover, since the small-
est eigenvalue of the weighted Laplacian is zero, the maximum eigenvalue
of M(G) in absolute value is given by

ρ(M(G)) =
{

1, if ∆ ρ(Lw(G)) < 2
| 1 − ∆ ρ(Lw(G))| if ∆ ρ(Lw(G)) ≥ 2. (8.15)

3In other words, its spectral radius; note, however, that Lw(G) is a symmetric matrix.

196 CHAPTER 8

We now note that when ∆ ρ(Lw(G)) > 2, one has ρ(Mw(G)) > 1, and
the sequence Mw(G)k becomes unbounded as k → ∞. On the other hand,
when ∆ ρ(Lw(G)) = 2, the matrix Mw(G) has at least one eigenvalue equal
to −1 and limk→∞ M(G)k fails to exist. We proceed to show that when
∆ρ(Lw(G)) < 2, it follows that

lim
k→∞

Mw(G)k =
1
n

11T . (8.16)

Along this line, observe that when ∆ ρ(Lw(G)) < 2, the eigenvalues of
Mw(G) satisfy

−1 < λi(Mw(G)) ≤ 1 for i = 1, 2, . . . , n.

Moreover, the normalized eigenvector of Mw(G), corresponding to its largest
eigenvalue λn(Mw(G)) = 1, is (1/

√
n) 1, which is also the eigenvector cor-

responding to λ1(Lw(G)) = 0. This follows from the identities

Mw(G)
(

1√
n
1
)

= (I − ∆Lw(G))
(

1√
n
1
)

=
1√
n
1.

Since for a connected graph λ2(Lw(G)) > 0, one has

λ1(Mw(G)) ≤ · · · ≤ λn−1(Mw(G)) < 1. (8.17)

The inequality (8.17), in conjunction with the spectral factorization of Mw(G),
leads us to the observation that when ∆ ρ(Lw(G)) < 2,

lim
k→∞

θ̂(k) =
(

lim
k→∞

Mw(G)k
)

θ̂(0) =
1
n
11T θ̂(0) =

(
1
n

n∑
i=1

zi

)
1.

Thereby, the identify (8.16) follows. Moreover, each sensor converges to
the (centralized) linear least squares estimate (8.7).

An important observation pertaining to Lemma 8.1 is that the spectral
condition (8.14) does not preclude the entries of the iteration matrix Mw(G)
(8.13) from being negative. As an example, consider a three-node path
graph G with node set V = {1, 2, 3} and edge set E = {{1, 2}, {2, 3}}.
Suppose that the weights on the edges {1, 2} and {2, 3} are 0.5 and 0.6,
respectively. The weighted Laplacian matrix of this graph and the corre-
sponding iteration matrix (letting ∆ = 1) are then

Lw(G) =

⎡⎣ 0.5 −0.5 0
−0.5 1.1 −0.6

0 −0.6 0.6

⎤⎦ and Mw(G) =

⎡⎣ 0.5 0.5 0
0.5 −0.1 0.6

0 0.6 0.4

⎤⎦ .

DISTRIBUTED ESTIMATION 197

We invite the reader to verify that the maximum eigenvalue of Lw(G) in
absolute value satisfies condition (8.14) and that each entry of Mw(G)k ap-
proaches 1

3 as k → ∞.
Choosing the required weights for the distributed least squares iteration

(8.9) can be approached in an optimization framework which attempts to
place the spectral radius of the matrix Mw(G) at a desired location (see
Chapter 12). There are also a few convenient optimization-free means of
choosing these weights, one of which we briefly expand upon.

Corollary 8.2. Suppose that the weighting diagonal matrix in (8.8) is de-
fined in such a way that its jth diagonal entry, representing the weight on
the jth edge e = uv, is

[W]jj = (max{dw(u), dw(v)})−1 . (8.18)

Then for any 0 ≤ ∆ < 1, one has ∆ ρ(Lw(G) < 2.

Proof. Our first observation is that the maximum eigenvalue of the weighted
Laplacian matrix in absolute value is bounded as

ρ(Lw(G)) ≤ max{dw(u) + dw(v) |uv ∈ E} ≤ 2d̄w, (8.19)

where d̄w = maxv∈V dw(v) = maxi [Lw(G)]ii denotes the maximum
generalized vertex degree. Next, using (8.19), a sufficient condition for
ρ(Lw(G) ≤ 2 to hold is that dw(v) ≤ 1, for all v ∈ V . Hence if the weight-
ing matrix W (8.8) is constructed according to (8.18), one has dw(v) ≤ 1 for
all v ∈ V . Consequently, for any ∆ ∈ [0, 1), it follows that ∆ ρ(Lw(G)) <
2.

A direct consequence of Corollary 8.2 is the following observation.

Corollary 8.3. If the edge weights are constructed according to (8.18) and
∆ ∈ (0, 1), then the distributed least squares iteration (8.9) converges to
the centralized least squares estimate.

8.1.2 Distributed Least Squares Estimation: Vector Case

In this section, we point out how the results of the previous section can be
extended to the vector parameter set. In this venue, the observation matrix
for the ith sensor, Hi, is allowed to be arbitrary as long as the correspond-
ing vertical concatenation (8.5) is full row rank. This is in contrast to our
discussion for the scalar case, where, in order to streamline the discussion,
we assumed Hi = 1, for all i. Moreover, for the vector case, we consider

198 CHAPTER 8

two classes of networks, referred to as monolithic and clustered networks.
Monolithic networks are those that do not possess significant clustering

or hierarchical structure–although the terminology can be more formally
defined, we will appeal to the natural intuition of the readers for the distinc-
tion.4 In the vector case, each sensor maintains two arrays, Pi ∈ Rq×q and
θ̂i ∈ Rq×1, where q is the length of the parameter vector, and executes the
iterations,

Pi(k + 1) = Pi(k) + ∆
∑

j∈N(i)

wij(Pj(k) − Pi(k)), (8.20)

θ̂i(k + 1) = θ̂i(k) + ∆
∑

j∈N(i)

wij(θ̂j(k) − θ̂i(k)), (8.21)

where i = 1, 2, . . . n, is the sensor index, and the iterations are initialized as

Pi(0) = HT
i Hi and θ̂i(0) = HT

i zi, i = 1, . . . , n, (8.22)

where zi ∈ Rpi×1 denotes the observation vector for the ith sensor. By a
straightforward extension of the discussion in the previous section, it can be
seen that

lim
k→∞

Pi(k) =
1
n

n∑
i=1

HT
i Hi (8.23)

and

lim
k→∞

θ̂i(k) =
1
n

n∑
i=1

θ̂i(0) =
1
n

n∑
i=1

HT
i zi, (8.24)

when the step size ∆ and the weights wij are chosen according to Lemma 8.1.
Therefore, each sensor asymptotically computes the centralized linear least
squares estimate according to

θ̂ = limk→∞ Pi(k)−1θ̂i(k). (8.25)

4See §5.4.2.

DISTRIBUTED ESTIMATION 199

0.5 0.5

0.5

0.5

0.5

1

2

34

5

(a)

0.5 0.5

1

2

34

5

1

(b)

11

1

2

34

5

(c)

Figure 8.2: Numbers above the edges represent their weights computed ac-
cording to (8.18). (a) Monolithic system. The edges represent the commu-
nication links (bidirectional). Communication updates occur at every time
step, at times t = k∆, k = 1, 2, . . . (b) Distributed system with 2 clusters.
Cluster 1 consists of nodes 1, 2, and 5 and cluster 2 consists of nodes 3 and
4. The edges represent the communication links over which updates occur
at every time step, t = k∆, k = 1, 2, (c) The edges represent the links
in the distributed system over which communication updates occur every β
time steps, at times t = kβ∆, k = 1, 2,

Note that the iterates Pi(k) may not be invertible for all values of k; hence
the local least squares estimate (8.25) at node i can only be computed once
Pi(k) becomes nonsingular.

8.2 PULSED INTERCLUSTER COMMUNICATION

In this section, we extend our analysis to clustered networks with pulsed
inter-cluster updates. We assume that all intracluster updates occur at every
time step, at times t = k∆, k = 1, 2, 3, . . . , while all intercluster updates
occur at times t = kβ∆, k = 1, 2, 3, . . . , with β as a positive integer
greater than one. The set of time instants [kβ∆ + ∆, kβ∆ + 2∆, . . . , (k +
1)β∆] constitutes an update cycle. Figure 8.2 shows inter- and intracluster
communication patterns as compared with the monolithic system. Consider
now a pair of nodes i and j belonging to two distinct partitions of G =
(V,E), namely, C1 and C2, where Ci ⊆ V (i = 1, 2) and C1 ∩ C2 = ∅. If
i and j exchange their state information at time t = kβ∆, we assume that
node i (respectively, node j) holds node j’s (respectively, node i’s) state
value until it receives the next update, which occurs at time t = (k + 1)β∆.
We refer to this mechanism as pulsed intercluster updating. A node i in
cluster Cj (j ∈ {1, 2}) is a gateway node if it connects to one or more nodes
in clusters other than Cj (besides having neighbors in its own cluster). We

200 CHAPTER 8

do not impose any conditions on the number of gateway nodes per cluster.
However, we assume that due to the distributed nature of sensors, it may
well be that intercluster communications require higher transmitter power
support compared to intracluster communications. From a power efficiency
or network lifetime point of view, it will therefore be beneficial to limit the
extent of intercluster communications, without significantly degrading the
convergence time of the overall distributed estimation algorithm.

Let E1 denote the set of edges which are activated at every time step (each
of length ∆) and E2 the set of edges which are activated every β > 1 time
steps, where β is an integer. We note that E1 ∪ E2 = E and E1 ∩ E2 = ∅,
where E denotes the set of edges corresponding to the monolithic system.
Furthermore, let D1 and D2 denote the incidence matrices defined by the
edge sets E1 and E2, respectively. For example, D1 is obtained from D(G)
by zeroing out the entries that correspond to edges in E2. The corresponding
weighted Laplacian matrices are denoted by Lw(G1) and Lw(G2). As an
example, referring to Figure 8.2, the matrices DT

1 and DT
2 are

DT
1 =

⎡⎢⎢⎢⎢⎣
−1 1 0 0 0
−1 0 0 0 1

0 0 −1 1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ (8.26)

and

DT
2 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −1 1 0 0
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ . (8.27)

The corresponding weighting matrices W1 and W2 and the weighted Lapla-
cian matrices, Lw(G1) and Lw(G2), are then

W1 =

⎡⎢⎢⎢⎢⎣
1
2 0 0 0 0
0 1

2 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎦ , W2 =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

⎤⎥⎥⎥⎥⎦ ,

DISTRIBUTED ESTIMATION 201

and

Lw(G1) =

⎡⎢⎢⎢⎢⎣
1 −1

2 0 0 −1
2

−1
2

1
2 0 0 0

0 0 1 −1 0
0 0 −1 1 0

−1
2 0 0 0 1

2

⎤⎥⎥⎥⎥⎦ , (8.28)

Lw(G2) =

⎡⎢⎢⎢⎢⎣
0 0 0 0 0
0 1 −1 0 0
0 −1 1 0 0
0 0 0 1 −1
0 0 0 −1 1

⎤⎥⎥⎥⎥⎦ .

Note that W1 + W2 = W and therefore

Lw(G1) + Lw(G2) = Lw(G), (8.29)

where W and Lw(G) are, respectively, the weighting matrix and the weighted
Laplacian matrix for the monolithic system. A consequence of (8.29) is that

max {λn(Lw(G1)), λn(Lw(G2))}≤ λn(Lw(G)). (8.30)

Let us define

Mw(G1) = I − ∆Lw(G1) and Mw(G2) = ∆Lw(G2); (8.31)

we note that Mw(G1)−Mw(G2) = I −∆Lw(G). With the above notation,
we can now express the evolution of the estimated state θ̂c on clustered
networks over an update cycle as

θ̂c((kβ + 1)∆) = (Mw(G1) − Mw(G2)) θ̂c(kβ∆),

θ̂c((kβ + 2)∆) = Mw(G1) θ̂c((kβ + 1)∆) − Mw(G2) θ̂c(kβ∆),
...

θ̂c((k + 1)β∆) = Mw(G1) θ̂c(((k + 1)β − 1)∆) − Mw(G2) θ̂c(kβ∆).

Since Mw(G1)1 = 1, the vector θ̂c((k + 1)β∆) can be expressed in terms
of θ̂c(kβ∆) as

θ̂c((k + 1)β∆) =

(
Mw(G1)β −

(
β−1∑
α=0

Mw(G1)α
)

Mw(G2)

)
θ̂c(kβ∆)

= M̃w θ̂c(kβ∆), (8.32)

202 CHAPTER 8

where

M̃w =

(
Mw(G1)β −

(
β−1∑
α=0

Mw(G1)α
)

Mw(G2)

)
. (8.33)

We now use the matrix identity

Xk − Y k =
k−1∑
α=0

Xk−1−α(X − Y)Y n (8.34)

for any X,Y ∈ Rn×n, to rewrite (8.33) as

M̃w = I −
((

I − Mw(G1)β
)

+

(
β−1∑
α=0

Mw(G1)α
)

Mw(G2)

)

= I −
(

β−1∑
α=0

(I − Mw(G1))Mw(G1)α +

(
β−1∑
α=0

Mw(G1)α
)

Mw(G2)

)

= I −
(

β−1∑
α=0

Mw(G1)α (I − Mw(G1)) +

(
β−1∑
α=0

Mw(G1)α
)

Mw(G2)

)

= I −
((

β−1∑
α=0

Mw(G1)α
)

∆Lw(G1) +

(
β−1∑
α=0

Mw(G1)α
)

∆Lw(G2)

)
= I − ∆ZLw(G), (8.35)

where Lw(G) = Lw(G1) + Lw(G2) and Z is a scaling matrix defined by

Z =
β−1∑
α=0

Mw(G1)α =
β−1∑
α=0

(I − ∆Lw(G1))
α . (8.36)

Note that although the matrix Z (8.36) is symmetric, the product ZLw(G)
that appears in (8.35) is not necessarily symmetric.

Let us now make a few observations that will subsequently be used in our
convergence analysis for distributed least squares estimation over a network
with pulsed intercluster communications.

Lemma 8.4. The scaling matrix Z (8.36) is positive definite if

∆ρ(Lw(G1)) < 1,

where ρ(Lw(G1)) denotes the largest eigenvalue of Lw(G1) in absolute
value.

DISTRIBUTED ESTIMATION 203

Proof. We first note that the matrix (I − ∆Lw(G1))n is symmetric for all
n ≥ 0, and its eigenvalues are

(1 − ∆λi(Lw(G1)))n for i = 1, 2, . . . , n.

Thereby λ1(Z) > 0 if ∆ρ(Lw(G1) < 1.

Before we state the next observation, we mention the following linear
algebraic fact. For a pair of matrices A,B ∈ Rn×n, if A is positive definite
and B is symmetric, then the product AB is a diagonalizable matrix, all of
whose eigenvalues are real. Moreover, the matrix product AB has the same
number of positive, negative, and zero eigenvalues, as B.

Lemma 8.5. When∆ρ(Lw(G1)) < 1, the eigenvalues of the matrix product
ZLw(G), where Z is defined as in (8.36), are real and nonnegative. More-
over, λ1(ZLw(G)) = 0 and the corresponding normalized eigenvector is
(1/

√
n)1.

Proof. The first part of the lemma follows from Lemma 8.4 and the above
observation on eigenvalues of matrix products; note that Lw(G) is symmet-
ric and positive semidefinite and Z is positive definite if ∆ρ(Lw(G1)) < 1.
The second part of the lemma holds since ZLw(G) 1 = 0.

Lemma 8.6. Let the matrix Z be defined as in (8.36). If ∆ρ(Lw(G1)) < 1,
then λ2(ZLw(G)) > 0.

Proof. First, note that Z is positive definite if ∆ρ(Lw(G1)) < 1 (by Lemma
8.4). Since Lw(G) is symmetric, the matrix ZLw(G) has the same number
of positive, negative, and zero eigenvalues, as Lw(G). As Lw(G) has only
one zero eigenvalue if the graph consisting of edges E1 ∪ E2 is connected,
λ2(ZLw(G)) > 0.

We now consider the following system of equations that describe the evo-
lution of the system every β∆ time steps (see (8.32) and (8.35)),

θ̂c(β∆) = (I − ∆ZLw(G)) θ̂c(0),

θ̂c(2β∆) = (I − ∆ZLw(G)) θ̂c(β∆),
...

θ̂c(kβ∆) = (I − ∆ZLw(G)) θ̂c((k − 1)β∆),

or alternately,

θ̂c(kβ∆) = (I − ∆ZLw(G))k θ̂c(0), for k ≥ 0. (8.37)

204 CHAPTER 8

For comparison, we note that the evolution of the monolithic system at time
t = k∆ is

θ̂(k∆)= (I − ∆Lw(G))k θ̂(0), for k ≥ 0. (8.38)

We are ready to state the main result of this section.

Lemma 8.7. Consider the sequence generated by (8.37), initialized as

θ̂c(0) = [θ̂1(0), θ̂2(0), . . . , θ̂n(0)]T .

Assuming that the network is connected and

∆ρ(Lw(G1)) < 1 and ∆ρ(ZLw(G)) < 2, (8.39)

one has

lim
k→∞

θ̂c(kβ∆) = α1,

where

α =
1
n

n∑
i=1

θ̂c
i (0).

Proof. The proof is identical to that of Lemma 8.1 and can be reconstructed
by noting that the spectral constraint on Lw(G1) guarantees that (see Lem-
mas 8.5 and 8.6):

1. all eigenvalues of ZLw(G) are real and nonnegative,

2. λ1(ZLw(G)) = 0 and its corresponding normalized eigenvector is
(1/

√
n) 1,

3. the algebraic multiplicity of the zero eigenvalue is 1,

4. ZLw(G) is diagonalizable, and therefore admits a decomposition of
the form ZLw(G) = TΛT−1.

We note that since the matrix product ZLw(G) is not necessarily symmetric,
the columns of the matrix T may not be orthonormal. Nevertheless, the
methodology of the proof of Lemma 8.1 can still be adopted using T−1

instead of TT .

Corollary 8.8. If the weighting matrixW (8.8) is constructed according to
(8.18), selecting β > 1 and ∆ ∈ (0, 1/β) guarantees that the sequence
(8.37) converges to the centralized least squares solution.

DISTRIBUTED ESTIMATION 205

Proof. Since ρ(ZLw(G)) ≤ ρ(Z)ρ(Lw(G)), for the inequality

∆ρ(ZLw(G)) < 2

to hold, it suffices to ensure that

∆ρ(Z)ρ(Lw(G)) < 2.

On the other hand, since ρ(Lw(G)) ≤ 2 if the weighting matrix W is con-
structed according to (8.18) (see the proof of Corollary 8.2), it suffices to
guarantee that ∆ρ(Z) < 1. If ∆ρ(Lw(G1)) < 1, we know that ρ(Z) = β.
Therefore, any value of ∆ in the range (0, 1/β) is sufficient to ensure that
∆ρ(ZLw(G)) < 2. Furthermore, the range of acceptable values of ∆ which
ensures that ∆ρ(Lw(G1)) < 1 is (0, 1

2) since

∆ρ(Lw(G1)) ≤ ∆ρ(Lw(G)) ≤ 2∆, (8.40)

where the first inequality follows from (8.30) and the second inequality fol-
lows from the fact that ρ(Lw(G)) ≤ 2 when W is constructed according
to (8.18). Consequently, when β > 1, having ∆ ∈ (0, 1/β) ensures the
convergence of the sequence (8.37).

While the upper bound ∆ < 1/β is sufficient, it may be overly conserva-
tive. For static networks, however, it is possible to evaluate the maximum
value of β offline, such that for a given value of ∆, the inequalities in (8.39)
are satisfied.

8.2.1 Clustered Networks: Vector Case

For clustered networks with positive integer β > 1, gateway nodes and
nongateway nodes execute distinct iterations for estimating the underlying
random vector. In this direction, let Vg denote the set of gateway nodes and
Vg the set of nongateway nodes; hence Vg ∪ Vg = V (G). Moreover, let We

denote the diagonal element of the weighting matrix W corresponding to
the edge e. All nodes in Vg now execute the iterations

Pi(k + 1) = Pi(k) + ∆
∑

e=ij∈E1

We (Pj(k) − Pi(k)) , (8.41)

θ̂c
i (k + 1) = θ̂c

i (k) + ∆
∑

e=ij∈E1

We

(
θ̂c
j(k) − θ̂c

i (k)
)

, (8.42)

206 CHAPTER 8

when initialized as (8.22); recall that E1 denotes the set of all edges that are
active at every time step. Nodes in Vg on the other hand execute another set
of iterations; in particular,

if k + 1 = 0 (mod β),

Pi(k + 1) = Pi(k) + ∆
∑

e=ij∈E

We (Pj(k) − Pi(k)) , (8.43)

θ̂c
i (k + 1) = θ̂c

i (k) + ∆
∑

e=ij∈E

We

(
θ̂c
j(k) − θ̂c

i (k)
)

. (8.44)

else
Pi(k + 1) = Pi(k) + ∆

∑
e=ij∈E1

We(Pj(k) − Pi(k))

+∆
∑

e=ij∈E2

We(Pj(k̂) − Pi(k̂)), (8.45)

θ̂c
i (k + 1) = θ̂c

i (k) + ∆
∑

e=ij∈E1

We(θ̂c
j(k) − θ̂c

i (k)),

+∆
∑

e=ij∈E2

We(θ̂c
j(k̂) − θ̂c

i (k̂)), (8.46)

where k̂ is the largest integer such that k̂ < k + 1 and k̂ mod β = 0. Note
that the initializations Pi(0) and θ̂c

i (0) are as in (8.22). Gateway nodes there-
fore need to maintain two additional arrays to store the values of the third
expression on the right-hand side of (8.45) and (8.46), corresponding to the
time instances which are multiples of β. These arrays are refreshed every β
time steps when updates are available from intercluster neighbors. Using the
same techniques as in §8.2, it can be shown that each sensor asymptotically
converges to the centralized linear least squares estimate using this adjusted
protocol.

In order to demonstrate the performance of the proposed algorithm, the
simulation results for a 49-node sensor network with 5 clusters are shown in
Figure 8.3. The total number of edges in the network in Figure 8.3 is 163,
of which 11 correspond to the intercluster network (shown as dotted lines).
The average distance between any pair of intracluster nodes is 1.29 whereas
the average distance between any pair of intercluster nodes is 2.72. The
node degree statistics, considering both inter- and intracluster edges, are:
minid(i) = 3, maxid(i) = 9, mean{d(i)} = 6.52 and standard deviation
of d(i) = 1.46. For all simulations, the length of the unknown parameter
vector θ is 5, the observation matrix for sensor i is Hi ∈ R5×5, and each
entry of Hi has been chosen from a uniform distribution on the unit interval.

208 CHAPTER 8

We proceed with simulations by increasing the value of β, while keep-
ing ∆ fixed at 0.99. Figure 8.5(a) shows the squared error for the smallest
degree node, when β ∈ {1, 8, 12, 16}. As can be seen from this figure,
the distributed method converges even for β = 8 (in fact, it also converges
for β = 10 but exhibits oscillatory behavior and ultimately diverges when
β ≥ 11).

We conclude this section with a comment on the performance of a pulsed
intercluster update scheme as opposed to an intermittent intercluster update
scheme. In the latter approach, an intracluster update received at step k is
used only for computing the state values at step k + 1 and is not “held” for
the duration of the update cycle. Figure 8.5(b) compares the squared error
for the two approaches.

8.3 IMPLEMENTATION OVERWIRELESS NETWORKS

In this section, we outline how the distributed estimation algorithms dis-
cussed above may be implemented over wireless networks. Channel access
mechanisms can broadly be divided into two categories: contention-free
protocols and contention-based protocols. Contention-free protocols elimi-
nate interference by proper scheduling of resources and ensure that wireless
transmissions, while in process, are always successful. Contention-based
protocols, on the other hand, allow users to contend for the wireless chan-
nel and prescribe mechanisms to resolve conflicts which may occur if users
attempt to transmit simultaneously. Examples of contention-free protocols
include frequency division multiple access (FDMA), time division multiple
access (TDMA), and code division multiple access (CDMA). Examples
of contention-based protocols are ALOHA,6 slotted-ALOHA, and different
variants of carrier sense multiple access (CSMA) schemes. Below, we de-
scribe the TDMA protocol in slightly more detail and explain how it may be
used to implement our synchronous, distributed algorithms.

In the traditional TDMA scheme, the time axis is divided into equal sized
slots and one slot is assigned to each user. Users are permitted to transmit
only during their assigned slots. The slot assignments repeat periodically
with each period known as a TDMA frame. In the simplest scheme, accom-
modating n users requires n slots. Obviously, users need to maintain time
synchronization in a TDMA protocol. For the monolithic case (β = 1),
given an undirected communication graph G = (V,E), one could therefore
design a TDMA frame comprising 2|E| slots, each used to accommodate a
unidirectional transmission between nodes i and j.

6

DISTRIBUTED ESTIMATION 209

0 20 40 60 80 100
10�5

10�4

10�3

10�2

10�1

100

Iteration index (k)

∥ ∥ ∥θ̂d L
L

S
−

θ̂
L

L
S

∥ ∥ ∥2

i = argmini (δi)

i = argmaxi (δi)

(a)

0 20 40 60 80 100
10�5

10�4

10�3

10�2

10�1

100

Iteration index (k)

∥ ∥ ∥θ̂d L
L

S
−

θ̂
L

L
S

∥ ∥ ∥2

i = argmini (δi)

i = argmaxi (δi)

(b)

Figure 8.4: Plots of squared error of the distributed LLS estimate (̂θ d
LLS) with

respect to the centralized estimate (̂θLLS), for the nodes with the highest and
lowest node degrees. (a) The solid lines correspond to β = 1 and ∆ = 0.99
and the dashed lines correspond to β = 2 and ∆ = 0.49. These values
satisfy the condition ∆ < 1/β. (b) The solid lines correspond to β = 1
and the dashed lines correspond to β = 2. For both values of β, we chose
∆ = 0.99.

210 CHAPTER 8

0 20 40 60 80 100
10�5

10�4

10�3

10�2

10�1

100

Iteration index (k)

∥ ∥ ∥θ̂d L
L

S
−

θ̂
L

L
S

∥ ∥ ∥2

β = 8

β = 12
β = 16

β = 1

(a)

0 20 40 60 80 100
10�5

10�4

10�3

10�2

10�1

100

Iteration index (k)

∥ ∥ ∥θ̂d L
L

S
−

θ̂
L

L
S

∥ ∥ ∥2

i = argmaxi (δi)

i = argmini (δi)

(b)

Figure 8.5: Plots of squared error of the distributed LLS estimate (̂θ d
LLS) with

respect to the centralized estimate (̂θLLS), for the nodes with the highest and
lowest node degrees. (a) β ∈ {1, 8, 12, 16} and ∆ = 0.99 for all values of
β. (b) The solid lines represent a pulsed intracluster update scheme and the
dashed lines represent an intermittent intercluster update scheme, where an
intercluster update received at step k is used only for computing the state
values at step k + 1 and is not “held” for the duration of the update cycle.
For both schemes, we chose β = 4 and ∆ = 0.99.

DISTRIBUTED ESTIMATION 211

We note that the factor 2 above is necessary since sensor nodes are typ-
ically equipped with a single transceiver and therefore cannot transmit and
receive simultaneously. Consequently, two-way information exchange be-
tween nodes i and j must be achieved by two unidirectional transmissions
between nodes i and j. Instead of a link-based scheduling approach, one can
also use a node-based scheduling approach in which a TDMA frame com-
prises n slots (n = |V |) with each slot being used by a node to broadcast
its message to its neighbors. The set of neighbors of any node i is essen-
tially dependent on its transmit power and the physical distance between the
transmitter and the receiver(s). Irrespective of which scheduling approach
is used, it is important that the nodes update their states synchronously at
the end of every TDMA frame and not within a frame immediately after re-
ceiving the state value(s) from its neighbor(s), which effectively amounts to
asynchronous updating. Under a synchronous updating policy, the iteration
index k is interpreted as the kth TDMA frame, with all nodes updating their
state values simultaneously at the end of every frame.

For implementation purposes, it is necessary that each node maintain an
one-dimensional array of length equal to the cardinality of its neighboring
node set, to store the messages it receives from its neighbors during a par-
ticular TDMA frame. Of course, the contents of the array are refreshed
every frame. To illustrate this, consider a 3-node path graph on the node
set V = {1, 2, 3} with E = {{1, 2}, {2, 3}}. The TDMA frame structure
is such that node 1 broadcasts in the first slot, node 2 in the second slot,
and node 3 in the third slot. The edge weight matrix, computed accord-
ing to (8.18), is W = Diag ([0.5, 0.5]T), and the corresponding weighted
Laplacian matrix is

Lw(G) =

⎡⎣ 0.5 −0.5 0
−0.5 1 −0.5

0 −0.5 0.5

⎤⎦ .

Suppose that the initial state vector is [10, 20, 30]T and ∆ = 1. If nodes are
allowed to update their own states only at the end of every frame, node 1 will
broadcast its state value in slot 1 of the first frame, which is received and
stored by node 2, its only neighbor. Node 2 then broadcasts its state value in
slot 2, which is received and stored by both nodes 1 and 3, and finally, node
3 broadcasts its state value in slot 3, which is received and stored by node
2. All three nodes now update their state values simultaneously. It can be
verified that the state vector at the end of the first cycle is [15, 20, 25]T , and
that it takes about 17 TDMA frames for the states of all nodes to converge
(within a tolerance of 10−4) to the average initial state, which is 20. On the
other hand, if nodes are allowed to update their own states as soon as they

212 CHAPTER 8

receive an update from any of their neighbors,
• node 1 broadcasts its state to node 2 in slot 1, following which node

2 immediately updates its own state to 20 + 0.5(10 − 20) = 15;

• node 2 broadcasts its current state (which is 15) to nodes 1 and 3 in
slot 2, following which they update their own states to 10 + 0.5(15 −
10) = 12.5 and 30 + 0.5(15 − 30) = 22.5, respectively, and finally

• node 3 broadcasts its current state (which is 22.5) to node 2 in slot 3,
following which node 2 updates its own state to 15+0.5(22.5−15) =
18.75.

The state vector at the end of the first frame is therefore [12.5, 18.75, 22.5]T .
Figure 8.6 shows that updating the state values within a TDMA frame may
not guarantee convergence of the algorithm to the average consensus. More-
over, the value to which the states converge may depend on the specific link
transmission/node broadcast schedule used.

A TDMA protocol can also be used for clustered networks with β > 1,
with some minor adjustments. To account for the different update rates
for intra- and intercluster communications, two different frame structures
should be used: an intercluster frame structure for frame numbers which
are multiples of β∆ and an intracluster frame structure for all other frame
numbers. As before, either link-based or node-based transmission schedules
can be used within each frame structure.7

We conclude our discussion on practical implications of distributed least
squares algorithms by noting that the efficiency of the TDMA schemes
can be improved by exploiting spatial diversity and allowing more than
one transmission to occur in any slot, provided (at least) that the signal-
to-interference noise ratio (SINR) at the intended receivers are all above
desired thresholds. Reusing time slots to accommodate multiple transmis-
sions reduces the latency and therefore leads to faster convergence. This
variant of TDMA is commonly known as spatial TDMA (S-TDMA).

8.4 DISTRIBUTED KALMAN FILTERING

In this section, we delve into distributed Kalman filtering, where a group of
sensors make noisy observations of a dynamic state driven by a discrete time
linear system, exchange information with other sensors, and collectively
reach an estimate of the underlying state.

7For applications where low probability of interception/detection is essential, it may also
be possible to adopt a hybrid TDMA/CDMA scheme, particularly for intercluster communi
cations if they require high transmit power support.

DISTRIBUTED ESTIMATION 213

0 5 10 15 20
0

1

2

3

4

5

6

7

Frame No. (k)

m
ax

i
(|x

i(
k
)−

α
|:

i
∈
N

)

Figure 8.6: Plot of the maximum absolute divergence from the average ini-
tial state value (denoted by α) using the state equation (8.13). The topology
is a 3-node path graph and the initial state vector is [10, 20, 30]. For this sim-
ulation, we used node broadcast scheduling in each frame (frame length = 3
slots) but allowed each node to update its own state value within a TDMA
frame, as soon as it received a message from its neighboring node. Clearly,
the node states do not converge to the average consensus, which is equal to
20. In fact, the final state of each node turns out to be 15.7143.

8.4.1 The Kalman Filter

We first consider the situation when the underlying variable of interest in the
estimation procedure is the state of a linear dynamic system, which leads us
directly to the realm of filtering. Before we examine distributed filtering
in detail, however, let us examine the mechanism for designing an optimal
linear filter for a single sensor. In this venue, consider the discrete time
system

x(k + 1) = Ax(k) + w(k), (8.47)
z(k) = H(k)x(k) + v(k), (8.48)

214 CHAPTER 8

where the system matrix A ∈ Rn×n is assumed to be time-invariant; the
observation matrix H(k) ∈ Rm×n, in the meantime, is allowed to be time-
varying. In (8.47) the vector w(k) is a stochastic process representing the
process noise and v(k) in (8.48) denotes the observation noise at time in-
stance k. Both w(k) and v(k) are assumed to be Gaussian stochastic pro-
cesses with zero mean and covariance matrices W and V, respectively. Fur-
thermore, the process noise and the measurement noise are assumed to be
statistically independent.

We now consider a process, a filtering algorithm, by which one observes
the vector z (8.48) and produces an estimate of the system’s underlying
state x. Moreover, we consider the situation when this process is recursive,
that is, at each iteration of the algorithm, we produce an estimate that is
subsequently improved upon as more measurements are obtained. In this
avenue, let us denote by x̂(k|k − 1) the estimate of the process x(k) prior
to the measurement received at time k; this is called the prior estimate of
x at time k; similarly, the vector x̂(k|k) is called the posterior estimate of
x(k) after the measurement at time k is received and incorporated in the
estimate. Following the standard argument for constructing the sought after
estimation algorithm, one is led to the update rule

x̂(k|k) = x̂(k|k − 1) + K(k)(z(k) − Hx̂(k|k − 1)), (8.49)

with K chosen as the solution of the optimization problem

min
K(k)

traceΣ(k|k), (8.50)

where Σ(k|k) = E{x̃(k|k) x̃(k|k)T } is the covariance matrix of the error
vector

x̃(k|k) = x̂(k|k) − x(k),

and the constraint set for (8.50) is defined by a recursion on Σ(k|k) that
involves K(k). The resulting filtering architecture scheme is shown in Fig-
ure 8.7 in feedback form. It can be shown that the optimal K for (8.50) is
given by the Kalman gain

K(k) = Σ(k|k − 1)H(k)T (H(k)Σ(k|k − 1)H(k)T + R)−1

= Σ(k|k)H(k)T R−1, (8.51)

DISTRIBUTED ESTIMATION 215

x̂(k|k) = x̂(k|k − 1) + u(k)

z(k)

H

K

x(k|k)

-
+

u(k)

Figure 8.7: Kalman filter as a feedback mechanism

where Σ(k|k−1) = E{x̃(k|k−1)x̃(k|k−1)T }. Substituting the expression
of the Kalman gain in the expression for the covariance update, we obtain

Σ(k|k) = Σ(k|k − 1)
−Σ(k|k − 1)H(k)T (H(k)Σ(k|k − 1)H(k)T + R)−1H(k)Σ(k|k − 1)
= (I − K(k)H(k))Σ(k|k − 1),

which can also be expressed as

I − K(k)H(k) = Σ(k|k)Σ(k|k − 1)−1;

pseudo-inverses can be used if the required inverses do not exist.
However, as we know the underlying model via which the state evolves,

we can actually do a predictive step and improve on the posterior estimate
until the next measurement is available. Thus

Σ(k + 1|k) = AΣ(k|k)AT + W (k) and x̂(k + 1|k) = Ax̂(k|k),

where Σ(k + 1|k) denotes the error covariance prior to incorporating the
measurement at time k + 1 into the estimate.

The Kalman filter and its recursion can be represented in an alternative
form, which proves to be advantageous when we take up distributed Kalman
filtering in the next section. This equivalent form, referred to as the infor-
mation filter, is obtained by representing the Kalman filter in terms of the
information matrix I(k) defined as

I(k) = Σ(k)−1.

216 CHAPTER 8

It can then be verified that by letting

Y (k) = H(k)T V −1H(k) and y(k) = H(k)T V −1z(k),

with ŷ(k|k) = I(k|k) x̂(k|k) and ŷ(k|k − 1) = I(k|k − 1) x̂(k|k − 1), the
recursion for the information filter assumes the form

I(k|k) = I(k|k − 1) + Y (k) and ŷ(k|k) = ŷ(k|k − 1) + y(k). (8.52)

The Kalman gain can be represented using the information matrix as

K(k) = A(I(k|k − 1) + H(k)T V −1H(k) + V)−1H(k)V −1

= AI(k|k)H(k)T V −1.

Lastly, the prediction step in the realm of the information matrix assumes
the form

I(k + 1|k) = L(k)M(k)L(k)T + C(k)W−1C(k)T ,

y(k + 1|k) = L(k)A−T ŷ(k|k),

where M(k) = A−TI(k|k)A−1, C(k) = M(k)(M(k) + W−1)−1, and
L(k) = I − C(k); once again, pseudo-inverses can be used if the required
inverses do not exist.

8.4.2 Kalman Filtering over Sensor Networks

We now take up the notion of distributed Kalman filtering and, in particular,
Kalman filtering over a sensor network. Our setup consists of the discrete
time linear system

x(k + 1) = Ax(k) + w(k) (8.53)

that is observed by n sensors

zi(k) = Hi(k)x(k) + vi(k) i = 1, 2, . . . , n, (8.54)

each with its own time-varying observation matrix Hi that is corrupted by a
zero-mean Gaussian noise vi with covariance Vi; once again, see Figure 8.1.
One natural way to approach Kalman filtering using multiple distributed

DISTRIBUTED ESTIMATION 217

sensors is to fuse the raw sensor measurements at a fusion center. That is,
we gather all measurements zi in terms of one vector

z(k) = [z1(k)T , z2(k)T , . . . , zn(k)T]T ,

which can be processed by a centralized Kalman filter for the system

x(k + 1) = Ax(k) + w(k), z(k) = H(k)x(k) + v(k), (8.55)

where

H =

⎡⎢⎢⎢⎣
H1(k)
H2(k)

...
Hn(k)

⎤⎥⎥⎥⎦ and v(k) =

⎡⎢⎢⎢⎣
v1(k)
v2(k)

...
vn(k)

⎤⎥⎥⎥⎦ ;

this can be accomplished in an optimal way via the Kalman filter update
(8.49) incorporating the Kalman gain (8.51). Provided that the noise vector
on each sensor is independent zero mean Gaussian, both in time and across
the sensors, the covariance matrix for noise on the fused measurement as-
sumes the form

V =

⎡⎢⎢⎢⎣
V1 0 · · · 0 0
0 V2 0 · · · 0
...

...
...

...
...

0 0 0 0 Vn

⎤⎥⎥⎥⎦ .

However, the centralized scheme has the disadvantage that all the compu-
tational work is performed at the fusion center and the sensors are only
employed for gathering the measurements and relaying them to the center.
A closer examination of the information filter (8.52) reveals an interesting
additive property for the information matrix of the form

I(k|k) = I(k|k − 1) +
n∑

i=1

Yi(k), (8.56)

ŷ(k|k) = ŷ(k|k − 1) +
n∑

i=1

yi(k), (8.57)

where

Yi(k) = Hi(k)T V −1
i Hi(k) and yi(k) = Hi(k)T V −1

i zi(k).

218 CHAPTER 8

The summation formulas (8.56) - (8.57) suggest a direct method for mak-
ing the recursive steps of the Kalman filter over the sensor network more
distributed. This is done by letting each sensor keep a local copy of the in-
formation matrix I(k|k − 1) and the information vector ŷ(k|k − 1). Then,
when each sensor performs a local Kalman filter based on its local measure-
ments, one has

Hi(k)T V −1
i Hi(k) = Ii(k|k) − Ii(k|k − 1),

and therefore the information matrix can be updated at each node by re-
ceiving the difference Ii(k|k) − Ii(k|k − 1), summing them up across all
sensors, and then adding them to obtain I(k|k − 1). Similarly, the infor-
mation vector can be updated by summing up the received yi(k) from each
sensor, which is also the difference

ŷi(k|k) − ŷi(k|k − 1),

with y(k|k − 1) as in (8.57). The prediction step can now be executed at
each node in its original form or in the information filter form.

The above scheme can also be considered in terms of the state and co-
variance update by including a coordinator. In this setting, the global update
assumes the form

x̂(k|k) = x̂(k|k − 1) + K(k)(z(k) − H(k)x̂(k|k − 1))
= (I − K(k)H(k))x̂(k|k − 1) + K(k)z(k).

However

K(k)z(k) = Σ(k|k)H(k)T V −1z(k) = Σ(k|k)
∑

i

Hi(k)T V −1
i zi(k)

and

I − K(k)H(k) = Σ(k|k)Σ(k|k − 1)−1,

and therefore

x̂(k|k) = Σ(k|k)Σ(k|k − 1)−1x̂(k|k − 1) + Σ(k|k)
∑

i

Hi(k)T V −1
i zi(k).

In the meantime,

Hi(k)T V −1
i zi = Ii(k|k)x̂i(k|k) − Ii(k|k)(I − kiHi(k))x̂i(k|k − 1),

and hence

DISTRIBUTED ESTIMATION 219

x̂(k|k)Σ(k|k) (I(k|k − 1)x̂(k|k − 1) +
∑

i Ii(k|k − 1)x̂i(k|k − 1))

I(k|k) = I(k|k − 1) +
∑

i (Ii(k|k) − Ii(k|k − 1)) x̂(k|k)

Ii(k|k)
Ii(k|k − 1)

x̂i(k|k)
x̂i(k|k − 1)

z(k)

ith local
filter

coordinator

Figure 8.8: Distributed Kalman filtering with a coordinator

x̂(k|k) = Σ(k|k)
[
I(k|k)x̂(k|k − 1)

+
∑

i

Ii(k|k)x̂i(k|k) − Ii(k|k − 1)x̂i(k|k − 1)
]
.

The information matrix can then be updated as

I(k|k)= I(k|k − 1) +
∑

i

Hi(k)T ViHi(k)

= I(k|k − 1) +
∑

i

Ii(k|k) − Ii(k|k − 1).

We note that the time update at the coordinator site can be implemented
by receiving x̂i(k|k − 1), x̂i(k|k),Ii(k − 1|k), and Ii(k|k) from each sen-
sor as depicted in Figure 8.8. We also note that in the above model, the
communication is from the sensors to the coordinator but not vice versa.

8.4.3 Relaxing the Communication Requirement

The proposed distributed Kalman filter that relies on the compact and es-
thetically pleasing summations (8.56) - (8.57) allows for utilizing the local
computational capability of the sensors, upgrading their status from merely

DISTRIBUTED ESTIMATION 221

accomplished via the update rule

x̂i(k|k) = x̂i(k|k − 1) + Ko
i (zi(k) − Hi(k)x̂i(k|k − 1))

+
∑

j∈N(i)

Kc
ij(x̂j(k|k − 1) − x̂i(k|k − 1)), (8.58)

where Ko
i is the gain by sensor i on the update term obtained from its ob-

servation, possibly a local Kalman filter, and Kc
ij is the gain used by sensor

i on the update terms obtained from communication with its neighbor j.
Although this scheme seems to resolve the inherent assumption on the syn-
chronous operation of the sensor network in terms of information-exchange,
it does have certain drawbacks, most notably, the lack of optimality guaran-
tees; see notes and references for pointers to the existing literature on this
and similar fully distributed filtering schemes.

SUMMARY

In this chapter, we presented two pillars of distributed estimation, namely,
distributed least squares and distributed Kalman filters, of particular rele-
vance in areas such as sensor networks, data fusion, and distributed sig-
nal processing. The emphasis has been on the structure of information-
exchange in relation to the particular distributed character of the estimation
tasks.

NOTES AND REFERENCES

Estimation theory, like a number of other disciplines in systems sciences,
was motivated by studying astronomical phenomena, that is, the motion of
comets and planets. This is the case both for the least squares approach as
invented by Gauss and Legendre, as well as dynamic estimation as it arises,
for example, in satellite tracking. Distributed estimation, as motivated in
the chapter, on the other hand, is mainly motivated by the area of distributed
robotics and sensor networks. Our treatment of the distributed least squares
parallels the works of Xiao, Boyd, and Lall in [253] and Das and Mesbahi
in [62]. §8.4 and our treatment of Kalman filtering is based on the work
of Rao and Durrant-Whyte [201] who stressed the utility of the information
filter in the context of distributed estimation. We also relied on the paper
by Hashemipour, Roy, and Laub [112] for their discussion on the parallel
implementation of the Kalman filter. Earlier references in the area of dis-
tributed Kalman filtering include those by Speyer [223] and Willsky, Bello,
Castanon, Levy, and Verghese [246]. Among the papers devoted to relaxing

222 CHAPTER 8

the all-to-all communication using the consensus algorithm we refer to those
by Spanos, Olfati-Saber, and Murray [221], Olfati-Saber and Sandell [186],
Stanković, Stanković, and Stipanović [225], Nabi, Mesbahi, Fathpour, and
Hadaegh [171], Khan and Moura [132], and Kirti and Scaglione [136].

SUGGESTED READING

There are a number of excellent books devoted to Kalman filtering and es-
timation theory. We particularly recommend the two classics by Gelb [96]
and Anderson and Moore [8], as well the more recent book by Crassidis and
Junkins [59].

EXERCISES

Exercise 8.1. Let Hi, i = 1, 2, 3, be the rows of the 3 × 3 identity matrix
in the observation scheme zi = Hix + vi for a three-node sensor network,
observing state x ∈ R3. It is assumed that the nodes form a path graph and
that vi is a zero-mean, unit variance, Gaussian noise. Choose the weighting
matrix W (8.8) and the step size ∆ in (8.20) - (8.21), conforming to the
condition (8.14). Experiment with the selection of the weights for a given
value of ∆ and their effect on the convergence properties of the distributed
least square estimation (8.20) - (8.21).

Exercise 8.2. Show that the iterations (8.20) - (8.21) converge to the cen-
tralized least squares solution.

Exercise 8.3. Suppose that w(k) and v(k) in (8.47) - (8.48) are replaced
by Bw(k) and Dv(k), for matrices B and D of appropriate dimensions.
Find the corresponding update equation for the Kalman gain analogous to
(8.51).

Exercise 8.4. The probability density function for a Gaussian distribution
with mean µ and variance σ is defined as

f(x;µ, σ2) =
K√
2πσ2

e−(x−µ)2/(2σ2),

where K is a normalization constant independent of x.
Now, consider two Gaussian distributions f1(x;µ1, σ

2
1) with K1 and f2(x;

µ2, σ
2
2) with K2. Show that the product of these two Gaussian distributions

DISTRIBUTED ESTIMATION 223

is also a Gaussian distribution f3(x;µ3, σ
2
3) with

µ3 =
σ2

2

σ2
1 + σ2

2

µ1 +
σ2

1

σ2
1 + σ2

2

µ2, σ2
3 =

σ2
1σ

2
2

σ2
1 + σ2

2

.

What is the corresponding value of K?

Exercise 8.5. Verify the iteration (8.32).

Exercise 8.6. Bayes Theorem is central to the Kalman/Information Filter. It
states that given a sequence of observations {z1, z2, . . . , zk} = Zk, then

f(x|Zk) =
f(Zk|x)f(x)

f(Zk)

where f(x|Zk) is the probability density function of x given observations
Zk (the posterior distribution), f(x) is the probability density function of
x, and f(Zk) is the joint probability density function of {z1, z2, . . . , zk}.
With the assumption that information about x obtained at time k − 1 is
independent of the information about x at time k for all k, then f(Zk|x) =
f(z1|x)f(z2|x) . . . f(zk|x) .

(a) Show that the posterior distribution is

f(x|Zk) =
f(zk|x)f(x|Zk−1)

f(zk|Zk−1)
.

Hint: f(z1| {z1, z2}) = 1 and f({z1, z2}|z1) = f(z2|z1).

(b) The Kalman/ Information Filter models f(x|Zk) as a Gaussian, that
is, as defined by a mean and variance. Under what assumptions is
f(x|Zk) Gaussian for all k. (Hint: Use Exercise 8.4.)

(c) A set of bearing only sensors produce a sequence of observations Zk

of an object’s location x ∈ R2. Can the Kalman/Information Filter
be used to calculate f(x|Zk)? (A bearing only sensor is a sensor
that indicates with a certain uncertainty which direction the object’s
location x is from the sensor’s location).

Exercise 8.7. Mutual independence of sensor measurements can not always
be guaranteed. An alternative sensor fusion method to the Kalman filter
is the Covariance Intersection algorithm, where no assumptions are made
about data correlation between sensor 1 with mean â and covariance A and
sensor 2 with mean b̂ and covariance B. The covariance intersection algo-
rithm with ω ∈ [0, 1], produces the ellipsoid

{x | (x − ĉ)T C(x − ĉ)T ≤ 1},

224 CHAPTER 8

with

C−1 = ωA−1 + (1 − ω)B−1, ĉ = C
(
ωA−1â + (1 − ω)B−1b̂

)
.

(a) Substitute the information matrix and vector into this algorithm. What
is the interpretation of the parameter ω?

(b) Plot the covariance ellipses defined by (â, A), (̂b,B) and (ĉ, C) where

â =
[

10
4.9

]
, A =

[
9 3
3 4

]
, b̂ =

[
10
5

]
, B =

[
5 −1
−1 7

]
.

Now compare to the Kalman update data fusion (d̂,D), is the Covari-
ance Intersection algorithm conservative? Why or Why not?

(c) Show that the choice of ω that minimizes the area of the update co-
variance C is equivalent to minimizing the determinant of C−1 for
the case where C is a 2 × 2 matrix. Find this ω for the (â, A) and
(b̂, B) of part (b).

Exercise 8.8. Consider the linear system (8.53) with A = −.02In×n, where
In×n is the n × n identity matrix. Let Hi, i = 1, 2, · · · , n be the ith row
of In×n in (8.54). Implement the information form of the Kalman filter on
the complete graph when n = 3, assuming that the updates (8.56) - (8.57)
can be executed on all nodes between the updates. Now, assume that the
graph is a path graph and that the nodes can run an agreement protocol (on
an undirected and unweighted graph; see Chapter 3) in order to calculate
(8.56) - (8.57). Implement this scheme for n = 2 and n = 3. Experiment
and comment on how the quality of this distributed Kalman filter is affected
as n increases.

Exercise 8.9. Verify the matrix identity (8.34).

Exercise 8.10. Consider the proposed update scheme for the distributed
Kalman filter (8.58). Given the local Kalman filter gain, propose an opti-
mization problem for choosing the weights Kij such that the covariance of
the estimated error is minimized at each iteration. Can this optimization
problem be formulated with a convex objective function and a convex con-
straint set?

Exercise 8.11. Using an appropriate Lyapunov function, show that the
Kalman filter is stable.

DISTRIBUTED ESTIMATION 225

Exercise 8.12. Show that the filtering scheme (8.58) can be made to be sta-
ble by appropriately choosing the gains Kc

ij for each pair of sensors i and j,
when Ko

i is the local Kalman gain for sensor i and the underlying informa-
tion graph is connected.

Exercise 8.13. Show that the Kalman filter is unbiased, that is, if the noisy
measurement is a zero-mean, the filter output is zero-mean as well. Does
this property remain valid for the distributed filter discussed in §8.4.2?

Exercise 8.14. Implement the coordinated distributed Kalman filter shown
in Figure 8.8 for the case when the linear system (8.53) is specified with
A = −.05I3×3, where I3×3 is the 3 × 3 identity matrix and Hi (i = 1, 2, 3)
is the ith row of I3×3 in (8.54).

Exercise 8.15. What is the primary bottleneck in removing the coordina-
tor from the coordinated Kalman filter from Figure 8.8?

Exercise 8.16. Given a network of sensor nodes, each of which is mea-
suring the value τi(t) = r(t) + vi(t) at time t, where r(t) is the true value,
and vi(t) is noise. A so-called consensus filter is given by

ξ̇i(t) = −
∑

j∈N(i)

(ξi(t) − ξj(t)) −
∑

j∈N(i)

(ξj(t) − τj(t)) − (ξi(t) − τi(t)),

where ξi(t) is agent i’s estimate of what r is at time t.
Show that the consensus filter is a low-pass filter in that

lim
s→∞

G(s) = 0,

where the transfer function is given by G(s) = ξ̂(s)/τ̂ (s), where

ξ̂(s) =
∫ ∞

0
e−stξ(t) dt and τ̂(s) =

∫ ∞

0
e−stτ(t) dt

are the Laplace transforms of the respective signals. Moreover, show that
the filter is bounded-in, bounded-out, which implies that limt→∞ ‖ξ(t) −
1r(t)‖ ≤ ε if ‖ṙ(t)‖ ≤ δ for some ε, δ > 0.

Chapter Nine

Social Networks, Epidemics, and Games

“Consistency is the last refuge of the unimaginative.”
— Oscar Wilde

Social networks, epidemics, and games offer rich areas for a network-
centric inquiry, requiring a blend of ideas from dynamical systems and
graph theory for their study. In this chapter, we delve into a representa-
tive set of problems in these areas: diffusion on social networks, analysis
of epidemic models using Lyapunov techniques, and chip firing games.
This is done in order to give the reader a glimpse of a graph theoretic
perspective on dynamic systems that are traditionally considered outside
engineering. The notes and references at the end of the chapter provide
pointers to references for each of these disciplines. Our focus will be on
scenarios where the underlying interconnection is assumed to be static; the
protocols running on these static networks can have a probabilistic com-
ponent. As interaction models for certain social interactions often have a
strong stochastic character, to this end, we refer the reader to Chapter 5 for
an introduction to random networks and processes that evolve over them.

9.1 DIFFUSION ON SOCIAL NETWORKS–THE MAX PROTOCOL

Our first example, which has a strong resemblance to the agreement prob-
lem, is inspired by considering a social network of friends, viewed as nodes
in an undirected graph G, that adopt a certain level of “fashionability,” mea-
sured in terms of a real number on the unit interval [0, 1]. Thus xi(k) = 1
and xj(k) = 0 refer to the scenario where nodes i and j are, respectively,
the most and least fashionable a member of the social group can be at time
index k. Let us initialize the group fashionability state at k = 0 by choosing
0 ≤ xi(0) ≤ 1, i = 1, 2, . . . , n, which can be done, for example, using a
normalized random number generator. We then let the social group evolve
according to the following rule: at every time step, a randomly selected per-
son in the network influences one of his/her neighbors–chosen according

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 227

to the uniform distribution–to be at least as fashionable as him/her. Note
that this protocol does not require that a given node have information about
his/her standing in the fashionability spectrum of the social network.

The proposed update rule for this social network can be expressed by

xi(k + 1) = max {xi(k), xj(k)}, k = 0, 1, 2, . . . , (9.1)

where node j is a randomly chosen node from the set of neighbors of i,
N(i). We refer to the update rule (9.1) as the max-protocol. Intuitively,
when the underlying network is connected, we expect that the max-protocol
steer the group toward the value

M = max
i

xi(0), (9.2)

that is, connectedness of the network with the (monotonic) updating scheme
(9.1), steers the social group toward being highly fashionable across the
board. In this section, we provide an analysis for this observation in terms
of the properties of the underlying network, provided that none of the nodes
in the network are socially isolated.

Consider the probability pi(k) that node i possesses the maximum fash-
ionability index M (9.2) after applying the protocol (9.1) k times. It is
straightforward to verify that this probability admits a recursive representa-
tion as

pi(k) = pi(k − 1) +
1

d(i)
(1 − pi(k − 1))

∑
j∈N(i)

pj(k − 1). (9.3)

In turn, the recursion (9.3) admits the compact representation

p(k) = p(k − 1) + Diag(1 − p(k − 1))∆(G)−1A(G) p(k − 1), (9.4)

where

p(k) = [p1(k), p2(k), . . . , pn(k)]T

denotes the “fashionability state” of the social group, and ∆(G) and A(G)
denote, respectively, the degree matrix and the adjacency matrix of the graph
G. Note the nonlinear form of (9.4) as compared with recursions we encoun-
tered when studying Markov chains or the agreement protocol in Chapter 3.

The intuitive observation of this section is as follows.

228 CHAPTER 9

Proposition 9.9. Given a connected network and a nonzero initial proba-
bility vector p(0), under the max-protocol (9.1), every node asymptotically
assumes the maximum fashionability level (9.2) in probability.

Proof. We prove the proposition using the Lyapunov method. First note
that (9.4) can be rewritten as

x(k) = x(k − 1) − Diag (x(k − 1))∆(G)−1A(G) (1 − x(k − 1)),

where

x(k) = 1 − p(k).

In view of the equality

Diag (x(k − 1))∆(G)−1A(G)1 = x(k − 1)

we have

x(k) = Diag (x(k − 1))∆(G)−1A(G)x(k − 1).

It now suffices to show that the sequence {x(k)}k≥1 converges to the origin.
For this purpose, consider the Lyapunov function

V (x(k)) = diag (∆(G))T x(k), (9.5)

where ∆(G) is the diagonal matrix of node degrees. Note that V (x(k)) > 0
for any nonzero x(k). Furthermore,

∆V (k) = V (x(k + 1)) − V (x(k))
= diag (∆(G))TDiag (x(k))∆(G)−1A(G)x(k)
−diag (∆(G))T x(k)

= x(k)T ∆(G)∆(G)−1A(G)x(k) − diag (∆(G))T x(k)
= x(k)T A(G)x(k) − diag (∆(G))T x(k).

First notice that when x(k) = α1 for α ∈ (0, 1),

∆V (k) = (α2 − α)diag (∆(G))T1 < 0 (9.6)

and the statement of the proposition follows immediately by viewing V (x(k))
(9.5) as a Lyapunov function for the probabilistic model of (9.1). Otherwise,
we can write

x(k) = α1 + x⊥(k),

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 229

such that 1T x⊥(k) = 0 and α ∈ (0, 1) is chosen appropriately. Observe
that

diag (∆(G))T x(k) ≥ x(k)T ∆(G)x(k),

since every entry of x(k) lies in the open interval (0, 1). Hence,

∆V (k) = x(k)T A(G)x(k) − diag (∆(G))T x(k)
≤x(k)T A(G)x(k) − x(k)T ∆(G)x(k)
=−x(k)T L(G)x(k)
=−(α1 + x⊥(k))T L(G) (α1 + x⊥(k))
=−x⊥(k)T L(G)x⊥(k) ≤ −λ2(G) ‖x⊥(k)‖2 < 0, (9.7)

where, once again, L(G) is the graph Laplacian and λ2(G) is its second
smallest eigenvalue. The last inequality follows from the fact that λ2(G) >
0 when the underlying graph is connected. The inequality (9.7) now leads
to the proof of the proposition.

From (9.6), we conclude that when x(k) = α1, for m ≥ k,

V (x(m)) = α2m−k−1 V (x(k)) ≤ αm−k V (x(k))

= e−(log 1
α

)(m−k) V (x(k)).

In other words, once x(k) = α1 for some α and time index k, x(k) ex-
ponentially converges to the origin. In the meantime, while away from the
subspace spanned by the vector 1, the sequence x(k) asymptotically con-
verges to it with its behavior governed by (9.7). For this case, a larger second
smallest Laplacian eigenvalue results in a more substantial reduction −∆V
at each step, and hence, a better convergence to a homogeneous, and equally
fashionable, social group.

9.2 THE THRESHOLD PROTOCOL

Our second model pertains to dynamic sociological models over graphs.
In this setting, the members of the population are represented by nodes of
the graph G = (V,E); the graph is assumed to have an infinite number of
nodes while every node has only a finitely many neighbors.1 At a given time
instance k, each node has the ability to choose among two states represented
by A and B; it might be convenient to think of these states as the political

1This is the only time in this book that we will be encountering infinite graphs.

230 CHAPTER 9

affiliation of the individual node in a two-party system. Thus for a given
time index k, one has

xi(k) = A or xi(k) = B.

Having initialized the nodes in G to assume one of the two possible states
A and B at k = 0, we allow the population to evolve according to the
following payoff scheme. We fix a parameter q ∈ (0, 1) and let the nodes
update their states knowing that

• if they both choose state A they receive payoff q,

• if they both choose state B they receive payoff 1 − q, and

• their payoff is zero if they choose opposite states.

Hence, if q = 0, all the nodes in the graph will choose state B right after
their initialization and stay at this state subsequently.

Suppose that at time k, every node in the graph except node i has fixed
its state, and node i, being greedy, faces the decision of choosing its state in
order to maximize its payoff. Let us denote by dA(i) and dB(i) the number
of neighbors of node i who have adopted, respectively, states A and B, right
before i makes its decision. Since the payoff at time index k, pi(k), is

pi(k) = qdA(i) + (1 − q)dB(i),

it is judicious for node i to choose state B if

dB(i)/d(i) > q;

to handle ties, we also allow node i to adopt B if q = dB(i)/d(i). Thus
node i will adopt state B if the fraction of its neighbors that have adopted
B, right before it makes its decision is greater than q. We call this policy
that underlies the evolution of the state of each node the threshold protocol.

In this context, consider the scenario when the majority of nodes have
initially adopted state A; state B represents the novel, initially unpopular,
choice that has been adopted by a few. We are interested in determining un-
der what conditions, particularly in relation to the choice of q, the initially
unpopular state B can spread throughout the network. In this venue, con-
sider S ⊆ V (G) as the set of initial adopters of state B and denote by hkq (S)
the set of nodes that have adopted being a B node after k applications of the
threshold protocol. Hence, hq defines a map from V (G) to itself.

Definition 9.10. The set S is called contagious (with respect to the threshold
q) if, for any finite setM ⊆ V (G), there exists k such thatM ⊆ hk

q (S).

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 231

BAB A AAAA

ABA B ABAA

t = 0

t = 1

t = 2

ABA A AAAA

Figure 9.1: State B cannot spread through the network with q = 1
2 .

BBB A ABAA

BBB B ABBA

t = 0

t = 1

t = 2

ABB A AAAA

Figure 9.2: State B spreads through the network with q = 1
2 .

Figures 9.1 - 9.2 illustrate this definition, exemplifying how being B can
spread throughout the network depending on the set of initial adopters and
the threshold value q.

Consider next a node, initially in state A, which has converted to state B
as the result of a threshold protocol. This node can conceivably reinstate its
A-state as a result of the state of its neighbors and the threshold value. If
we do not allow the node to reinstate its A state after switching to state B,
we call the resulting protocol a progressive threshold protocol. We denote
by h̄k

q (S) the set of nodes in state B after k applications of the progressive
threshold protocol, with threshold value q, to the set S whose nodes are in
state B; naturally, h̄q defines yet another map from V (G) to itself. Progres-
sive threshold protocols are conceptually easier to analyze, as members of
the population are not allowed to “oscillate” between the two states. It is
therefore insightful that, as far as being contagious, the two protocols are in
fact equivalent.

232 CHAPTER 9

Theorem 9.11. For any graph, there exists a finite contagious set with re-
spect to hq if and only if there exists one with respect to h̄q.

Proof. Clearly, if S is contagious with respect to hq it is also contagious
with respect to h̄q; in other words, the progressive threshold protocol is
“more contagious” than its nonprogressive version. Thus it suffices to show
that if S is contagious with respect to the progressive threshold map h̄q,
there exists a set U ⊆ V (G) such that hq is contagious with respect to U .

The construction of the set U proceeds as follows. Let cl S be the closure
of the set S, that is, the set of vertices that not only contains S as a subset but
also all vertices that are neighbors of vertices in S. Since S is contagious
with respect to h̄q , there exists some positive integer u such that

cl S ⊆ h̄u
q (S);

set U = h̄u
q (S). We now proceed to show that the set U ⊆ V (G) is conta-

gious with respect to the nonprogressive threshold protocol defined by hq.
Our strategy involves showing that repeated applications of the nonprogres-
sive threshold on U can “match” the application of the progressive threshold
on S. First, we observe that by induction, for all W ⊆ V (G) and j ≥ 1,

h̄j
q(W) = W ∪ hq(h̄j−1

q (W)). (9.8)

Suppose that v > u. By (9.8) one has

h̄v
q(S) = S ∪ hq(h̄v−1

q (S)).

But since h̄v−1
q (S) includes U , and hence the closure of S, one has S ⊆

hq(h̄v−1
q (S)) and thus

h̄v
q(S) = hq(h̄v−1

q (S)).

By induction, it then follows that

hv−u
q (U) = hv−u

q (h̄u
q (S)) = h̄v

q(S),

and thereby U is contagious with respect to hq .

Progressive threshold protocols are easier to analyze as they make the
progression of state B in the network monotonic. Progression of state B in
the network is a function of the network geometry and the threshold value.
However, the threshold value can have a dominant effect on the progression
of state B. For example, if q = 1, then state B does not have much of
a chance to diffuse over the network. We call the contagion threshold the
minimum value of q where any finite initial subset of vertices in B state can
eventually diffuse their state to the entire network.

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 233

Theorem 9.12. The contagion threshold for any graph is at most 12 .

Proof. In light of Theorem 9.11, it suffices to consider the progressive ver-
sion of the threshold protocol. In this case, for S ⊆ V (G), Sj−1 ⊆ Sj

where Sj = h̄q(S) for all j ≥ 1. Assume that q > 1
2 and for any subset of

vertices W , let e(W) denote the number of edges with one end in W and
the other node outside of W , that is, in V (G)\W . We now claim that when
q > 1

2 , if Sj−1 is strictly contained in Sj , then e(Sj) < e(Sj−1). To see
this, consider a node v in Sj\Sj−1. Since v at time j has decided to adopt a
B state, and given that q > 1

2 , v must have strictly more neighbors in Sj−1

than in V (G)\Sj . Summing over all nodes in Si\Sj−1, we can conclude
that e(Sj) < e(Sj−1). Subsequently, e(Sk) is a strictly decreasing sequence
bounded by zero. Hence, there has to be some value of k such that

Sk = Sk+1 = Sk+2 = · · · ,

which implies that state B will not spread unboundedly throughout the net-
work, and thus cannot be contagious.

9.3 EPIDEMICS

Mathematical epidemiology is another rich source of problems in dynamic
multiagent systems. There are a number of models in mathematical epi-
demiology that have been used to shed light on the spread of diseases in a
population. In this section, we consider one such model, the single popu-
lation and multipopulation SEIR model. The SEIR acronym refers to the
fact that this model considers the interaction between the susceptible, ex-
posed, infective, and recovered (or removed) in a given population. One of
the critical issues often examined using models such as SEIR is the stability
of various equilibria. Our choice of the model in this section has been influ-
enced by the ease by which this model lends itself to analysis via Lyapunov
theory, with a crucial part of the analysis being graph theoretic.

9.3.1 Single Population

In the single population SEIR model, the population is divided into different
compartments:

• susceptible group S; individuals that can potentially get infected;

• exposed group E; individuals that have been infected but they are not
considered infectious;

234 CHAPTER 9

• infective group I; individuals that are infectious; and

• recovered (or removed) group R; individuals that have either recov-
ered or removed from the population. We note that in this model it is
assumed that members of group R do not go back to the susceptible
group.

Let us denote by y(t), z(t), w(t), and v(t) the fractions of the population
that are in groups S, E, I , and R, respectively, at a given time t. Thus

y(t) + z(t) + w(t) + v(t) = 1 for all t ≥ 0.

In the SEIR model, the population is considered to be of a fixed size. The
part of the removed population R that accounts for recovered, natural death,
or death caused by the disease is exactly compensated for by birth in the
society. The set of differential equations that governs the evolution of the
various compartments of the population thereby assumes the form,

S : ẏ(t) =−δy(t) − βy(t)w(t) + δ, (9.9)
E : ż(t) =−(δ + ε)z(t) + βy(t)w(t), (9.10)
I : ẇ(t) =−(δ + γ)w(t) + εz(t), (9.11)

while the evolution of the fraction of removed population R is dictated by

R : v̇(t) = γw(t) − δv(t); (9.12)

in this model, δ denotes the birth rate as well as the natural death rate in
the various compartments,2 ε is the rate of becoming infectious after a latent
period, γ is the recovery rate of infectious individuals, and β is the constant
of the bilinear term, indicating the rate by which the disease is transmitted
from the infective to the susceptible group upon contact. The model scheme
is shown in Figure 9.3. Note that since the population is fixed, the dynamics
of the recovered group does not have to be examined explicitly for stability
analysis. Denote the state of the population, the fraction of the population
in the SEI categories at time t, by x(t) = [y(t), z(t), w(t)]. Then, it can be
shown that there are exactly two equilibrium points for the system (9.9) -
(9.11): the infection-free state xo = [1, 0, 0]T and the potential “endemic”
state x∗ = [y∗, z∗, w∗]T .

2Note that δy(t) + δz(t) + δw(t) + δv(t) = δ for all t ≥ 0.

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 235

S E I R

birth

death/removaldeath death death

δ

δy δz δw

β ε

δv

γ

Figure 9.3: The SEIR model

The endemic equilibrium point is defined by

y∗ =
1

Ro
,

z∗ =
δ

δ + ε

(
1 − 1

Ro

)
, (9.13)

w∗ =
δε

(δ + ε)(δ + γ)

(
1 − 1

Ro

)
,

where

Ro =
βε

(δ + ε)(δ + γ)
(9.14)

is called the reproduction number for the system (9.9) - (9.11); a positive en-
demic equilibrium state x∗ exists when Ro > 1. The reproduction number
has a critical role in specifying which equilibrium state is globally asymp-
totically stable for the system (9.9) - (9.11). Let us start with an observation
whose proof is left as an exercise.

Proposition 9.13. The positive orthant R3
+ is positively invariant with re-

spect to (9.9) - (9.11), that is, if x(̄t) ∈ R3
+ for some t̄ then x(t) ∈ R3

+ for
all t ≥ t̄.

As a result of Proposition 9.13, it is natural to examine whether R3
+ con-

tains a globally stable equilibrium.

236 CHAPTER 9

Theorem 9.14. When the reproduction number Ro > 1, the positive en-
demic equilibrium state x∗ ∈ R3

+ exists and is globally asymptotically sta-
ble with respect to R3

+\{xo}.

Proof. Consider the Lyapunov function

V (x(t)) = (y(t) − y∗ ln y(t)) +
δ + ε

ε
(z(t) − z∗ ln z(t))

+
δ + ε

ε
(w(t) − w∗ ln w(t)), (9.15)

which is built around the equilibrium point (9.13). Note that this Lyapunov
function is continuous for all x > 0 and diverges to infinity at the boundary
of the positive orthant; its time derivative is also equal to⎡⎣ 1 − (y∗/y(t))

1 − (z∗/z(t))
((δ + ε)/ε)(1 − (w∗/w(t)))

⎤⎦T ⎡⎣ −δy(t) − βy(t)w(t) + δ
−(δ + ε)z(t) + βy(t)w(t)
−(δ + γ)w(t) + εz(t)

⎤⎦ ,

which in light of (9.13) - (9.14), can be simplified as3

V̇ (x(t)) = (δ − δy∗)
(
− y∗

y(t)
− z(t)w∗

z∗w(t)
− y(t)z∗w(t)

y∗z(t)w∗ + 3
)

−δy∗
(

y∗

y(t)
+

y(t)
y∗

− 2
)

. (9.16)

Now let

y(t) =
y(t)
y∗

, u(t) =
z∗w(t)
z(t)w∗ , a = δy∗, and c = δ − δy∗.

Then (9.16) can be written as

V̇ (x(t)) = −a
(
y(t) +

1
y(t)

− 2
)
− c
(
y(t)u(t) +

1
y(t)

+
1

u(t)
− 3
)

.

Moreover, as long as the trajectories of the SEIR dynamics remain in R3
+,

one has a, c ≥ 0. Furthermore, from the arithmetic mean geometric mean
inequality,4 it follows that for all t ≥ 0,

y(t) +
1

y(t)
− 2 ≥ 0

3The simplification requires some work.
4The arithmetic mean geometric mean (AM GM) inequality states that for any sequence

of nonnegative numbers, their arithmetic mean is an upper bound for their geometric mean.

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 237

and
1

y(t)
+

1
u(t)

+ y(t)u(t) − 3 ≥ 0.

Hence, from LaSalle’s invariance principle, it follows that the trajectory of
the system (9.9) - (9.11) converges to the set

{x(t) | V̇ (x(t)) = 0}.

This condition requires that y(t) = u(t) = 1, which in turn implies the
convergence of the system (9.9) - (9.11) to the set

M = {(y(t), z(t), w(t)) | y(t) = y∗, z(t)w∗ = z∗w(t)}. (9.17)

As x∗ = [y∗, z∗, w∗]T is the only equilibrium in M (9.17), the global
asymptotic stability of the positive endemic equilibrium x∗ follows.

Theorem 9.14 highlights the pivotal role of the reproduction number Ro

(9.14) in studying the epidemic outbreak in the SEIR model. In fact, this is
particularly crucial since when the reproduction number Ro ≤ 1, there ex-
ists no positive endemic equilibrium state for (9.9) - (9.11) and the infection-
free equilibrium state xo = [1, 0, 0]T turns out to be globally asymptotically
stable.

9.3.2 Multipopulation

In this section, we delve into the multipopulation extension of the SEIR
epidemic model of §9.3.1. The model is as follows. We allow each pop-
ulation to have three different compartments, corresponding to susceptible,
exposed, and infective groups, as in the single population model. However,
in addition to interactions between the distinct compartments in each pop-
ulation, we allow for interactions among the compartments in n different
populations. Hence, the model (9.9) - (9.11) is extended as

S : ẏi(t) =−δy
i yi(t) −

n∑
j=1

βijyi(t)wj(t) + δi, (9.18)

E : żi(t) =−(δz
i + εi)zi(t) +

n∑
j=1

βijyi(t)wj(t), (9.19)

I : ẇi(t) =−(δw
i + γi)wi + εizi(t), (9.20)

238 CHAPTER 9

where i = 1, 2, . . . , n, and the parameters for each group are direct exten-
sions of the single population parameters; for example, δwi is the rate of
natural death, removed, or recovered, in the infective group for the ith pop-
ulation and δi denotes the rate of population influx or the birth rate in the ith
population. We once again adopt the notation xi(t) = [yi(t), zi(t), wi(t)]T

and x(t) = [x1(t)T , x2(t)T , . . . , xn(t)T]T for all t. Our standing assump-
tion for the rest of this section is that for each i,

εi > 0 and δ∗i = min{δy
i , δz

i , δw
i + γi} > 0.

In order to follow an analysis analogous to §9.3.1, we define the set

Γ =
{

x ∈ R3n
+ | yi ≤

δi

δy
i

, yi + zi + wi ≤
δi

δ∗i
, i = 1, 2, . . . , n

}
, (9.21)

and observe the following invariance property, whose proof is left as an
exercise.

Proposition 9.15. The set Γ (9.21) is positively invariant for the multipop-
ulation SEIR model (9.18) - (9.20).

The reproduction parameter for the multipopulation model assumes a ma-
trix theoretic flavor, expressed in terms of the spectral radius of an appropri-
ately defined matrix for the interaction model.

Definition 9.16. The multipopulation reproduction parameter Ro is defined
as the spectral radius of the matrixMo with entries

[Mo]ij =
βijεi δi/δ

y
i

(δz
i + εi)(δw

i + γi)

for i, j = 1, 2, . . . , n, that is, Ro = ρ(Mo).

The significance of the reproduction number Ro in the multipopulation
SEIR model is analogous to that for the single population model: as we
will see shortly, when Ro > 1 and the interpopulation interaction network
is a strongly connected digraph, then the positive endemic equilibrium for
the multipopulation SEIR model is globally stable. This observation will be
substantiated via a reasoning that nicely blends a Lyapunov-type argument
with graph theoretic constructs. The existence of such an equilibrium point
follows from the fact that the trajectories of (9.18) - (9.20) remain in the
interior of the bounded set Γ (9.21); see notes and references. In addition,
the disease-free state turns out to be unstable when Ro > 1.5

5Moreover, the disease free state is globally stable in Γ (9.21) when Ro ≤ 1.

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 239

We now gather the main ingredients for the proof of global stability of the
endemic equilibrium in the interior of Γ; we denote this interior by intΓ.
The proof also provides a motivation for introducing out-degree Lapla-
cian as opposed to the in-degree Laplacian for digraphs that has been used
throughout the book. In this direction, let D denote the weighted digraph
associated with the interaction between the multiple populations, that is, we
let D = (V,E), where V = {1, 2, . . . , n} and there is a weighted directed
edge from node i to j if βij > 0; in this case, we set the weight on the
directed edge from i to j as βij . The corresponding weighted out-degree
Laplacian assumes the form

Lo(D) =

⎡⎢⎢⎢⎣
∑n

k=1,k �=1 β1k −β12 · · · −β1n

−β21
∑n

k=1,k �=2 β2k · · · −β2n

...
... · · · ...

−βn1 · · · −βn,n−1
∑n

k=1,k �=n βnk

⎤⎥⎥⎥⎦ .

Parallel to our discussion on (in-degree) Laplacians for digraphs in Chapter
2, when D is strongly connected, the null space of Lo(D) is characterized by
span{1} and the null space of Lo(D)T is parameterized by the left eigen-
vector of Lo(D) associated with an eigenvalue of zero. In fact, this left
eigenvector v = [v1, v2, . . . , vn]T has positive entries and can be specified
by letting

vi =
∑
T∈Ti

∏
(r,m)∈E(T)

βrm,

where Ti is the set of all spanning in-branchings of D that are rooted at
vertex i, and E(T) is the set of edges in the directed tree T. A rooted in-
branching is the “dual” construct of a rooted out-branching discussed in
Chapter 2, in the sense that in the former case, all directed edges are ori-
ented toward the root. When a directed edge is added away from the root of
a rooted in-branching toward another vertex in the digraph, we call the re-
sulting digraph unicyclic. With this definition in mind, we state an auxiliary
lemma which proves to be crucial in the proof of the main theorem of this
section.

Lemma 9.17. Let x∗ be an arbitrary point in the interior of the set Γ (9.21)
and define

Hn(x) =
n∑

i=1

n∑
j=1

viβ̂ij

(
3 − y∗i

yi
− yiwjz

∗
i

y∗i w
∗
j zi

− ziw
∗
i

z∗i wi

)
, (9.22)

240 CHAPTER 9

where β̂ij = βijy
∗
i w

∗
j and v is the left eigenvector of the out-degree Lapla-

cian

Lo(D̂) =

⎡⎢⎢⎢⎢⎣
∑n

k=1,k �=1 β̂1k −β̂12 · · · −β̂1n

−β̂21
∑n

k=1,k �=2 β̂2k · · · −β̂2n

...
... · · · ...

−β̂n1 · · · −β̂n,n−1
∑n

k=1,k �=n β̂nk

⎤⎥⎥⎥⎥⎦
for a strongly connected weighted digraph D̂. Then Hn(x) ≤ 0 for x ∈
intΓ and Hn(x) = 0 implies that x = x∗.

Proof. The components of the left eigenvector of the out-degree Laplacian
v corresponding to its zero eigenvalue can be parameterized as

vk =
∑
T∈Tk

∏
(r,m)∈E(T)

β̂rm,

where Tk is the set of all spanning in-branchings of D̂ that are rooted at
vertex k, and E(T) is the set of edges in the directed tree T . Thus the
products of the form viβ̂ij in the expression of Hn (9.22) can be viewed as
the product of the weights on the edges of a unicyclic digraph Q, obtained
by adding a directed edge from i to j in the (spanning) in-branching rooted
at vertex i. In fact, the double sum defining the expression for Hn (9.22)
can be viewed as the sum of the product of the weights of the edges in the
unique cycles of all unicyclic subgraphs Q ofD̂. Hence

Hn(x) =
∑
Q

Hn,Q,

where Q ranges over all unicyclic subgraphs ofD̂,

Hn,Q =
∏

(r,m)

β̂rm

∑
(i,j)∈E(Qc)

(
3 − y∗i

yi
− yiwjz

∗
i

y∗i w
∗
j zi

− ziw
∗
i

z∗i wi

)

=
∏

(r,m)∈E(Q)

β̂rm

⎛⎝3q −
∑

(i,j)∈E(Qc)

y∗i
yi

− yiwjz
∗
i

y∗i w
∗
j zi

− ziw
∗
i

z∗i wi

⎞⎠ ,

the parameter q denotes the number of directed edges in Q, and Qc is the
unique directed cycle in the unicyclic subgraph Q. However,

∏
(i,j)∈E(Qc)

(
y∗i
yi

yiwjz
∗
i

y∗i w
∗
j zi

ziw
∗
i

z∗i wi

)
=

∏
(i,j)∈E(Qc)

wjw
∗
i

w∗
j wi

= 1

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 241

for each unicyclic graph Q. Therefore from the arithmetic mean geometric
mean inequality, it follows that

∑
(i,j)∈E(Qc)

(
y∗i
yi

+
yiwjz

∗
i

y∗i w
∗
j zi

+
ziw

∗
i

z∗i wi

)
≥ 3q,

and Hn,Q ≤ 0 for each Q. Moreover, when Hn,Q = 0, one has that for each
(i, j) ∈ E(Qc),

y∗i
yi

=
yiwjz

∗
i

y∗i w
∗
j zi

=
ziw

∗
i

z∗i wi
. (9.23)

From the above discussion, it then follows that Hn = 0 if yi = y∗i for all i.
We claim that Hn(x) = 0 also implies that for some α > 0,

zi = αz∗i and wi = αw∗
i , (9.24)

for all i = 1, 2, . . . , n.
We now show that in fact α = 1, thus completing the proof of the lemma.

Let us first observe that (9.23) implies that
wi

w∗
i

=
zi

z∗i
=

wj

w∗
j

(9.25)

for every directed edge (i, j) that belongs to the (directed) cycle of some
unicycle subgraph Q of D̂. Since D̂ is assumed to be strongly connected,
every directed edge (i, j) belongs to the cycle of at least one such subgraph.
Thus the identity (9.25) holds for every directed edge inD̂. As the digraph
is strongly connected, the identity (9.25) can thus be extended to all pairs of
vertices in D̂ and hence (9.24) follows. Substituting yi = y∗i , zi = αz∗i , and
wi = αw∗

i in (9.18) results in the identity

δi − δy
i y∗i − α

∑
j

βijy
∗
i w

∗
j = 0,

which in view of (9.18) implies that α = 1. Hence x∗ is the unique root of
Hn(x) (9.22).

We are now in the position to prove the main result of this section.

Theorem 9.18. Assume that the multipopulation interaction graph is strongly
connected. Then when the reproduction number Ro > 1, the multigroup
model has a unique endemic equilibrium which is globally stable in the in-
terior of set Γ (9.21).

242 CHAPTER 9

Proof. Denote by x∗ the endemic equilibrium in the interior of Γ denoted
by Γo whose existence is guaranteed when Ro > 1. This follows from
the fact that the trajectory of the system (9.18) - (9.20) is persistent in the
interior of a compact set; see Proposition 9.15 and notes and references.
Let β̂ij = y∗i w

∗
j βij be the weights on the edges of the strongly connected

interaction digraph, and let v = [v1, v2, . . . , vn]T be the left eigenvector of
the corresponding out-degree Laplacian associated with its zero eigenvalue.
Construct the Lyapunov function V (x) as

∑
i

vi

(
(yi + y∗i ln yi) + (zi + z∗i ln zi) +

δz
i + εi

εi
(wi + w∗

i ln wi)
)

.

Then

V̇ =
∑

i

vi

[
δi − δy

i yi −
∑

j

βijyiwj − δi
y∗i
yi

+ δy
i y∗i

+
∑

j

βijy
∗
i wj +

∑
j

βijyiwj − (δz
i + εi)zi −

∑
j

βij
w∗

i yiwj

wi

+(δz
i + εi)z∗i + (δz

i + εi)zi −
(δz

i + εi)(δw
i + γi)

εi
wi

− (δz
i + εi)

w∗
i zi

wi
+

(δz
i + εi)(δw

i + γi)
εi

w∗
i

]
=
∑

i

vi

[
(δy

i y∗i (2 − y∗i
yi

− yi

y∗i
) + (

∑
j

βijy
∗
i wj −

(δz
i + εi)(δw

i + γi)
εi

wi)

+ (3
∑

j

βijy
∗
i w

∗
j −
∑

j

βijw
∗
j

(y∗i)
2

yi
−
∑

j

βijyiwj
z∗i
zi

− (δz
i + εi)zi

w∗
i

wi
)
]

≤
∑

i

vi

[
(
∑

j

βijy
∗
i wj −

(δz
i + εi)(δw

i + γi)
εi

wi)

+ (3
∑

j

βijy
∗
i w

∗
j −
∑

j

βijw
∗
j

(y∗i)
2

yi
−
∑

j

βijyiwj
z∗i
zi

− (δz
i + εi)zi

w∗
i

wi
)
]

since

y∗i
yi

+
yi

y∗i
≥ 2

with equality holding if and only if yi = y∗i . However, as v is the left
eigenvector of the weighted out-degree Laplacian defined in Lemma 9.17

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 243

corresponding to its zero eigenvalue, it follows that

V̇ ≤
∑

i

vi

⎛⎝3
∑

j

β̂ij −
∑

j

β̂ij
y∗i
yi

−
∑

j

β̂ij
yiwjz

∗
i

y∗i w
∗
j zi

− (δz
i + εi)zi

w∗
i

wi

⎞⎠
=

n∑
i=1

n∑
j=1

viβ̂ij

(
3 − y∗i

yi
− yiwjz

∗
i

y∗i w
∗
j zi

− ziw
∗
i

z∗i wi

)
= Hn(x).

From LaSalle’s invariance principle and Lemma 9.17, the statement of the
theorem now follows.

We conclude this chapter with a turn toward yet another vista, namely,
the chip firing games over graphs.

9.4 THE CHIP FIRING GAME

Let N chips be distributed among n vertices on a connected graph G =
(V,E) with m edges. The number of chips on vertex v at time t, denoted
by xv(t), will be its state. Thus

1T xv(t) = N for all t ≥ 0.

We denote by x(t) the “configuration” of the game at time t (the number of
chips on all vertices). In the chip firing game, one chooses a vertex in the
graph that has as many chips as its degree. Subsequently, one chip from this
selected vertex is moved to each of its neighbors–this is referred to as the
firing of that vertex. If a vertex does not have as many chips as its degree, it
is spared of being fired; see Figure 9.4.

In addition to the number of chips on a given vertex, another state that we
will associate with that vertex is the number of times it has fired up to time
t. This will be denoted by fv(t). The game terminates when there exists no
vertex that can be fired, that is, for some t,

xv(t) < d(v) for all v ∈ V .

In this section, we focus on examining graph theoretic conditions that gov-
ern the termination of a chip firing game. Let us warm up with a lemma on
chip firing games that never terminate; we refer to them as infinite games.

Lemma 9.19. In an infinite chip firing game, every vertex is fired infinitely
often.

244 CHAPTER 9

Figure 9.4: Chip firing over graphs; in this round, the node with five chips
can fire whereas all other nodes cannot.

Proof. Since the game is infinite, some configuration of chips, say x̂, ap-
pears infinitely often. Let us consider the firing sequence between two sub-
sequent appearances of state x̂, say at times t1 and t2. Suppose that there
exists a vertex that has not fired during the interval [t1, t2]. Since the state
of this vertex remains the same, none of its neighbors could fire during this
interval, and thus

xj(t1) = xj(t2) = xj(t) for all t ∈ [t1, t2], j ∈ N(i) ∪ {i}.

However, G is connected; thus, by extending the above argument across
the network, during the interval [t1, t2], either everybody fired or nobody
did. This is, however, in contradiction with the assumption that the game is
infinite; hence, every vertex in the graph has to fire infinitely often.

Now we give the dual version of Lemma 9.19.

Lemma 9.20. If each vertex has already been fired at least once, then the
game will never terminate.

Proof. Assume that each vertex has already been fired at least once, yet the
game has terminated at time T . Furthermore, assume that v̂ is the vertex
that fired last in the game and ṽ is the vertex that had been idle the longest
by the termination time. Thus, all other vertices have fired after ṽ last fired.
Among these vertices, some are the neighbors of ṽ; thus x̃v(T) ≥ d(ṽ),
that is, ṽ can fire after v̂, contradicting the assumption that the game had
terminated at T by v̂.

The next observation further formalizes the intuition that a chip firing
game with “too many” chips will never terminate.

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 245

Proposition 9.21. Consider a terminating chip firing game on G = (V,E)
with n vertices, m edges, and N chips. Then N ≤ 2m − n.

Proof. If the game is terminating, then for some finite time T ,

xv(T) ≤ d(v) − 1

for all v and hence

N =
∑

v

xv(T) ≤
∑

v

(d(v) − 1) ≤ 2m − n.

We now further examine the role of two graph parameters in the termina-
tion of a chip firing game on G. First, a useful lemma.

Lemma 9.22. Suppose that uv ∈ E for a chip firing game with N chips on
G = (V,E). Then for any t,

|fu(t) − fv(t)| ≤ N.

Proof. Given t, let fu(t) = a and fv(t) = b with a < b without loss of
generality. Consider the subgraph H of G whose nodes have not fired more
than a times up to time t. Then the edge uv has contributed b − a chips
to the transfer of chips from H to H. Since the total number of chips in H
cannot be more than N , it follows that b − a ≤ N .

Theorem 9.23. Let G = (V,E) be a connected graph on n vertices and
m edges, with diam(G) denoting its diameter, that is, the maximum (edge)
distance between two vertices of G. Then a finite chip firing game on G
terminates within 2mn diam(G) firings.

Proof. Since the game is finite, by Lemma 9.20, there exists a vertex v that
has never been fired, that is, fv(t) = 0 for all t. Thus, by Lemma 9.22, for a
vertex u at a distance d from v, one has fu(t) ≤ dN , that is, for any u ∈ V
one has fu(t) ≤ diam(G)N . Consequently, there were at most a total of
diam(G)nN firings during the game. As the game is finite, we can bound
the total number of firings as

diam(G)nN ≤n(2m − n) diam(G) ≤ 2nm diam(G) − n2 diam(G)
< 2mn diam(G).

246 CHAPTER 9

The above result highlights the role of the diameter of the graph on the
termination of a terminating chip firing game. Our final bound–as expected–
is in terms of the second smallest eigenvalue of the graph Laplacian. Again,
we need an auxiliary observation first.

Proposition 9.24. Let G = (V,E) be a connected graph with V = [n]. If
y = L(G)x and xn = 0, then

|1T x| ≤ n

λ2(G)
‖y‖.

Proof. Define

L(G)† =
n∑

i=2

1
λi(G)

uiu
T
i ,

with ui as the normalized eigenvector of L(G) associated with eigenvalue
λi(G). Then

L(G)†L(G) =
(

I − 1
n
11T
)

,

and y = L(G)x implies that L(G)†L(G)x = L(G)†y. Now let

en = [0, 0, . . . , 1]T

and observe that

eT
n (I − 1

n
11T)x =

−1
n
1T x = eT

n L(G)†y,

and

|1T x| = n |eT
nL(G)†y| ≤ n

λ2(G)
‖en‖ ‖y‖ =

n

λ2(G)
‖y‖.

Let σ be a sequence of firing in the chip firing game during the time
interval [to, tf]. Then the counter function of the sequence, f(σ), is such
that [f(σ)]i denotes the number of times vertex i has fired in the sequence
σ. Hence,

x(tf) − x(to) = L(G)f(σ).

Corollary 9.25. Let G = (V,E) be a connected graph with V = [n]. Then
a terminating chip firing game on G with N chips terminates in at most√

2nN/λ2(G) firings.

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 247

Proof. Note that as ‖x(to)‖, ‖x(tf)‖ ≤ N one has ‖x(to) − x(tf)‖ ≤√
2N . Since the game is finite, there exists a vertex, say vn, that has not

fired. Thus L(G)f(σ) = x(to) − x(tf) and fvn(σ) = 0. Applying Proposi-
tion 9.24 results in

|1T f(σ)| ≤ n

λ2(G)
‖x(to) − x(tf)‖ ≤

√
2Nn/λ2(G). (9.26)

Hence, a terminating chip firing game terminates faster on the graph with
larger algebraic connectivity, a result which is reminiscent of the agreement
protocol discussed in Chapter 3.

SUMMARY

The purpose of this chapter has been to provide a glimpse into the vast area
of graph theoretic inquiries in sociology, epidemiology, and games over
graphs. Along the way, we examined dynamic models over networks for
capturing how fashions or infections diffuse over a population or multipop-
ulations, as well as the termination properties of chip firing games.

NOTES AND REFERENCES

The section on the max-protocol is from an unpublished work of Kim and
Mesbahi, expanding on how insights obtained from the agreement protocol
can be extended to nonlinear protocols evolving over lattices (where taking
maximum or minimum of elements is well defined). As the reader will
quickly realize, analyzing this rather intuitive scenario is streamlined by
framing the problem setup in terms of the underlying probability space. Our
exposition of the threshold model for the spreading of fashions, ideas, and
so on, in §9.2 parallels Kleinberg’s article in [176].

The example in §9.3 reinforcing the utility of a graph theoretic approach
to multiagent systems in the context of epidemics is from the paper of Guo,
Li, and Shuai [109], which is based on Lyapunov-type arguments. For an
alternative venue for studying epidemiology over populations that are not
fully mixed using generating functions, see the work of Newman [174].
Our discussion on chip firing games, also referred to as Abelian sandpiles
in theoretical physics, parallels [101].

There are a number of other disciplines in sociology, biology, and games
that blend notions from graph theory (in particular, the degree sequence)
in the dynamic analysis of the corresponding networked system. Among

248 CHAPTER 9

these, we point out the area of evolutionary games on graphs [178], popula-
tion dynamics [119], chemical reaction networks [87, 235], social learning
over networks [105], referral systems like Google PageRank [142], opinion
dynamics [25], and pulsed biological oscillators [160].

SUGGESTED READING

For more on social networks we refer the reader to [122]. For epidemiol-
ogy, the two volume book by Murray [170] has been the classic reference.
The edited volume by Nisan, Roughgarden, Tardos, and Vazirani [176] is
the source of many interrelated research inquires on algorithmics, pricing,
games, and networks.

EXERCISES

Exercise 9.1. Verify that the update equation (9.4) encodes the max-protocol
(9.1).

Exercise 9.2. Consider a modification of the max-protocol,

xi(k + 1) = max{xi(k), βxj(k)}

for 0 ≤ β ≤ 1 and j ∈ N(i). In this case, β reflects the deficiency of vertex
i to gauge the fashionability of its neighbors. Discuss how the convergence
of this protocol is influenced by the choice of β.

Exercise 9.3. Consider another modification of the max-protocol,

xi(k + 1) = max{xi(k), 1 − β(1 − xj(k))}

for 0 ≤ β ≤ 1. In which situation might this model be applicable? Discuss
how the convergence of this protocol is influenced by the choice of β.

Exercise 9.4. Consider the threshold protocol in the configuration shown
in Figure 9.1 at t = 0. Discuss how the behavior of the protocol will be
altered if the infinite path graph is changed to a cycle on a large number of
vertices.

Exercise 9.5. Under what conditions the threshold protocol is contagious
on a finite cycle graph with q ∈ [0, 1

2]?

SOCIAL NETWORKS, EPIDEMICS, AND GAMES 249

Exercise 9.6. Does adding edges to a connected graph on an infinite number
of vertices improves the chances that a given set is contagious?

Exercise 9.7. Using computer simulations, examine whether the states of
the vertices of a finite graph, under the action of the threshold protocol, is
periodic.

Exercise 9.8. In the SIS model of infectious diseases, the population con-
sists of the susceptible, denoted by S, and infective, denoted by I , whose
evolution are governed by the coupled differential equations

Ṡ(t) = −βI(t)S(t) + γI, İ = βS(t)I(t) − γI,

where β is the pairwise infectious contact rate and γ is the recovery rate.
Define the reproduction ratio for the SIS model as Ro = βN/γ, where
N = S(t)+ I(t) for all t. Show that for Ro < 1 the disease will die out and
for Ro > 1 it remains endemic in the population. What is the interpretation
of the case when Ro = 1 and comment on whether the disease remains en-
demic in the population in this case.

Exercise 9.9. Show that when the reproduction parameter Ro ≤ 1 for the
single population SEIR model (9.9) - (9.11) the infection-free equilibrium
state xo = [1, 0, 0]T is globally asymptotically stable.

Exercise 9.10. Verify the statement of Proposition 9.13.

Exercise 9.11. Show that there are exactly two equilibrium points for the
single population SEIR dynamics (9.9) - (9.11).

Exercise 9.12. Verify the simplified expression for V̇ (t) in (9.16).

Exercise 9.13. Let Lo(D) be the out-degree Laplacian for the weighted
strongly connected digraph where the weight on the edge (i, j) is denoted
by βij . Use Theorem 2.12 to deduce that the entries of the left eigenvector
of Lo(D) corresponding to its zero eigenvalue are parameterized as

vi =
∑
T∈Ti

∏
(r,m)∈E(T)

βrm,

where Ti denotes the set of all spanning in-branchings of D rooted at i and
E(T) denotes the set of edges in the directed tree T .

250 CHAPTER 9

Exercise 9.14. Let δy
i , δz

i , and δw
i denote the natural death or removal rates

in the susceptible, exposed, and infective groups in population i, respec-
tively. Moreover, let γi and δi denote, respectively, the rate of recovery for
infectious individuals and the rate of population influx or birth rate in this
population. Set δ∗i = min{δy

i , δz
i , δw

i + γi}. Show that

Γ =
{

x ∈ R3
+ | yi ≤

δi

δy
i

, yi + zi + wi ≤
δi

δ∗i
, i = 1, 2, . . . , n

}
is positively invariant for the multipopulation SEIR model (9.18) - (9.20).

Exercise 9.15. In the multipopulation SEIR model (9.18) - (9.20), assume
that the underlying interaction digraph is strongly connected. Show that
when Ro ≤ 1 (Ro is the reproduction number defined in Definition 9.16),
the unique equilibrium for the system is a disease-free state. Moreover,
show that in this case, this equilibrium state is globally asymptotically sta-
ble in Γ(9.21).

Exercise 9.16. Let h̄q denote the map of the progressive threshold proto-
col with threshold value q on G = (V,E). Show that for a given W ⊆ V
and all j ≥ 1,

h̄j
q(W) = W ∪ hq(h̄j−1

q (W)).

Exercise 9.17. Show that for a chip firing game on a connected graph with
n nodes, m edges, and N chips, when N < m the game is always finite.

Exercise 9.18. Show that for a chip firing game on a connected graph with
n nodes, m edges, and N chips, if m ≤ N ≤ 2m − n, then the game can
be finite or infinite depending on the initial configuration of the game. Give
an example for both situations.

PART 3

NETWORKS AS SYSTEMS

This page intentionally left blank

Chapter Ten

Agreement with Inputs and Outputs

“Fundamental progress has to do with
the reinterpretation of basic ideas.”

— Alfred North Whitehead

In this chapter, we consider the input-output linear systems obtained when
a collection of nodes in the network assume control and sensing roles,
while the remaining nodes execute a local, agreement-like protocol. Our
aim is to identify graph theoretic implications for the system theoretic
properties of such systems. In particular, we show how the symmetry
structure of a network with a single control/sensing node, characterized
in terms of its automorphism group, directly relates to the controllability
and observability of the corresponding input-output system. Moreover, we
introduce network equitable partitions as means by which such controlla-
bility and observability characterizations can be extended to networks with
multiple inputs and outputs.

10.1 THE BASIC INPUT-OUTPUT SETUP

The agreement protocol, as introduced in Chapter 3, provides the ambient
setting for the evolution of a set of dynamic agents. Just as a stabilizing
controller is typically a first step in the control design phase, the agree-
ment protocol will provide the underlying cohesion of the network. In this
chapter, we consider situations where the agreement protocol over a fixed
network is also influenced by external inputs, injected at particular nodes.
We also consider the case where the corresponding linear system can be
observed. Although, in principle, one can designate network inputs and
outputs at distinct nodes, we will be primarily concerned with the situa-
tion when the input and output nodes are identical. Hence, we postulate a
scenario involving nodes in the network that are capable of influencing the
network and observing their neighbors’ responses as their injected signals
propagate through–and are reflected back by–the network. We refer to the
complements of the input and output nodes in the network as the floating
nodes.

254 CHAPTER 10

a1

a2

a1

a2

(a) (b)

Figure 10.1: A network with input nodes as {a1, a2}: (a) before partitioning
the nodes among input/output and floating nodes; (b) after partitioning the
nodes among input/output and floating nodes; the dashed edges determine
the entries of the matrix Bf in (10.3) - (10.4).

10.1.1 The Network Partition

Our initial setup involves designating some of the nodes in the agreement
protocol (3.2) over a fixed network G as inputs and outputs. The other
agents in the network, the floating nodes, continue to abide by the ambient
agreement protocol. Let us use the subscripts i and f to denote attributes
related to input/output nodes and floating nodes, respectively. For exam-
ple, a floating graph Gf is the subgraph induced by the floating node set
V (Gf) ⊆ V (G) after removing the input/output nodes as well as the edges
between input/output nodes and between input/output nodes and floating
nodes. An example of this is shown in Figure 10.1.

The input/output designation thus induces a partition of the incidence ma-
trix D(G) as

D(G) =
[

Df

Di

]
, (10.1)

where Df ∈ Rnf×m and Di ∈ Rni×m; here nf and ni are the cardinali-
ties of the sets of floating and input/output nodes, respectively, and m is the
number of edges in the graph G. The underlying assumption for this parti-
tion, without loss of generality, is that input/output nodes are indexed last in
the original graph G.

Since L(G) = D(G)D(G)T , the partitioning (10.1) implies that

L(G) =
[

Af Bf

BT
f Ai

]
, (10.2)

where

Af = Df DT
f , Ai = Di DT

i , and Bf = Df DT
i .

AGREEMENT WITH INPUTS AND OUTPUTS 255

As an example, Figure 10.2 depicts an agreement protocol endowed with
inputs and outputs with

V (Gi) = {5, 6} and V (Gf) = {1, 2, 3, 4}.
Such an input/output and floating node grouping also partitions the inci-
dence matrix1 of the original network as

Df =

⎡⎢⎢⎣
−1 0 0 1 0 0 −1 0
0 0 1 −1 −1 0 0 0
1 −1 0 0 0 0 0 1
0 1 −1 0 0 1 0 0

⎤⎥⎥⎦
and

Di =
[

0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1

]
,

where the columns of the matrices Df and Di correspond to the edges e1 -
e8 in Figure 10.2. Hence,

Af =

⎡⎢⎢⎣
3 −1 −1 0
−1 3 0 −1
−1 0 3 −1
0 −1 −1 3

⎤⎥⎥⎦ and Bf =

⎡⎢⎢⎣
0 −1
−1 0
0 −1
−1 0

⎤⎥⎥⎦ .

1 2

3 4

56 e1

e2

e3

e4

e5

e6

e7

e8

Figure 10.2: Input/output agreement network with V (Gf) = {1, 2, 3, 4} and
V (Gi) = {5, 6}

10.1.2 Input-Output Agreement

Based on the partitioning of the node set into input/output and floating
nodes, the resulting system is a standard linear time-invariant system. We

1With an arbitrary orientation on the edges.

256 CHAPTER 10

thereby proceed to study the input-output agreement in this context when
the floating nodes evolve as

ẋf (t) = −Af xf (t) − Bf u(t), (10.3)
y(t) = −BT

f xf (t), (10.4)

where u denotes the exogenous “control” signal injected at the input nodes.
Moreover, as (10.3) - (10.4) suggest, we allow the input nodes to also func-
tion as output nodes, consistent with the geometry by which they influence
the floating nodes. In this sense, we are considering a collocated control
structure imposed on the agreement protocol.

It is important to note that the system matrices in (10.3) - (10.4) are func-
tions of the underlying graph G and the scheme by which its vertices have
been partitioned among inputs and outputs. In fact, let us provide more in-
sight into the role of the network and its partition on the system matrices Af

and Bf in (10.3) - (10.4) before proceeding to consider certain system the-
oretic aspects of the resulting controlled agreement protocol. A convenient
tool for achieving this is the input/output indicator vectors.

Definition 10.1. Let vi be an input node in G, that is, vi ∈ V (Gi). The input
indicator vector with respect to node i,

δi : V (Gf) → {0, 1}nf ,

is such that

δi(vj) =
{

1 if vj ∼ vi,
0 otherwise.

1 2

3

4

Figure 10.3: Path graph with node 4 designated as the input

For instance, the indicator vector for the node set V (Gf) = {1, 2, 3} in the
graph shown in Figure 10.3 with respect to the input {4} is δ4 = [1, 1, 0]T .

We now realize that since

[Bf]nm =
∑

k

[Df]nk[Di]mk,

AGREEMENT WITH INPUTS AND OUTPUTS 257

the nmth entry of Bf is negative if and only if vj is an input node that is
connected to the floating node vi in the original graph G; otherwise, this
entry is zero. Hence each column of Bf in (10.3) - (10.4) is an indicator
vector with respect to one of the inputs to the floating network, that is,

Bf = −[δnf +1 δnf +2 · · · δn] ∈ Rnf×ni . (10.5)

Another useful construct for relating the system matrices in (10.3) - (10.4)
to the structure of the network G is the input-to-state degree matrix. This
matrix is defined in relation to the input nodes as follows: for the floating
node vj ∈ V (Gf), let di(j) denote the number of input nodes that are adja-
cent to vj . Then the input-to-state degree matrix is

∆f = Diag([di(1), di(2), . . . , di(nf)]T) ∈ Rnf×nf . (10.6)

For example, with reference to Figure 10.2 and the selection of nodes 5 and
6 as inputs, one has

∆f = I.

A moment’s reflection on the construction of the matrix Af now reveals
that

Af = L(Gf) + ∆f , (10.7)

where L(Gf) is the Laplacian matrix of the floating graph Gf . This follows
from the observation that one can partition the matrix Df as

Df = [Dff |Dfi],

where the columns of the submatrix Dff correspond to edges incident be-
tween floating nodes, and the columns of Dfi correspond to edges between
input/output nodes and floating nodes. We also note that the columns of
Dfi, by construction, have one nonzero entry in each column. As a result,
we have

Af = DfDT
f =DffDT

ff + DfiD
T
fi = L(Gf) + ∆f . (10.8)

Since the row sum of the Laplacian matrix is zero, the sum of the jth row
of Af and that of Bf (G) are both equal to di(j) as

Af 1 = ∆f 1 = [dj(1) dj(2) · · · dj(nf)]T . (10.9)

Hence

Af 1 = −Bf 1. (10.10)

258 CHAPTER 10

Note that the 1 vectors on the left- and right-hand sides of (10.10) belong,
respectively, to Rnf and Rni . For example, if there is only one input in the
network, that is, V (Gi) = {n}, we have

Bf = −δn and ∆f = Diag([dn(1), dn(2), . . . , dn(n − 1)]T).

10.1.3 Controllability and Observability of Input-Output Networks

Having a linear system induced by the agreement protocol, exemplified by
(10.3) - (10.4), it is natural to proceed by considering its system theoretic
properties. Due to the structure of (10.3) - (10.4), it is only necessary to
consider either the controllability or observability properties of the system,
as one implies the other. (Recall our standing assumption that the input
and output nodes are the same and interact with the rest of the network
identically.)

We note that controllability of the system (10.3) - (10.4) allows the in-
put nodes to be used as a steering mechanism for the states of the floating
nodes by locally injecting continuous signals into the network. Similarly,
observability at the output nodes of the network would allow a mechanism
by which a node can observe the state of the entire network by locally ob-
serving the states of its neighbors. However, before we are ready to put on
our graph theoretic “shades,” let us explore what the more traditional ma-
trix theoretic point-of-view would offer in regards to the controllability and
observability of (10.3) - (10.4).

As (10.3) - (10.4) is a linear, time-invariant system, its controllability
and observability can be inferred via the Popov-Belevitch-Hautus test (see
Appendix A.3). Specifically, (10.3) is uncontrollable and unobservable if
and only if there exists a left eigenvector of Af that is orthogonal to all
columns of Bf , that is, if the system of linear equations

νT Af = λ νT νTBf = 0,

in the variables λ and ν, is feasible.2 Since the system matrix Af is sym-
metric, its left and right eigenvectors are the same. Hence, the necessary and
sufficient condition for controllability and observability of (10.3) - (10.4) is
that none of the eigenvectors of Af should be simultaneously orthogonal to
all columns of Bf , and we state this fact as a proposition.
Proposition 10.2. Consider the input-output agreement protocol whose evo-
lution is described by (10.3) - (10.4). This system is controllable and ob-
servable if and only if none of the eigenvectors of Af are simultaneously
orthogonal to all columns of Bf .

2We note that controllability and observability of the pair (Af , Bf) is equivalent to that
of the pair (−Af ,−Bf).

AGREEMENT WITH INPUTS AND OUTPUTS 259

One useful consequence of Proposition 10.2 pertains to the relationship
between the multiplicity of the eigenvalues of the matrix Af and the network
controllability in the SISO case. Specifically, suppose that one of the eigen-
values of Af is not simple, that is, it has a geometric multiplicity greater
than one. Since Af is symmetric, this is also equivalent to Af not having
a set of distinct eigenvalues. For example, assume that ν1 and ν2 are two
eigenvectors of Af that correspond to the same eigenvalue with geometric
multiplicity greater than one; moreover, assume that none of these eigen-
vectors are orthogonal to Bf . Then ν = ν1 + cν2 is also an eigenvector to
Af . In particular, by choosing c = −νT

1 Bf/νT
2 Bf , we get

νT Bf = 0.

In other words, we are always able to find an eigenvector to Af that is or-
thogonal to Bf when an eigenvalue has geometric multiplicity greater than
one. Hence, we arrive at the following observation.

Proposition 10.3. Consider the agreement protocol with a single input whose
evolution is described by (10.3) - (10.4). If Af has an eigenvalue with geo-
metric multiplicity greater than one then the system is uncontrollable (and
unobservable).

Another matrix theoretic result pertaining to the controllability of (10.3),
which holds in the SISO as well as the MIMO case, is as follows.

Lemma 10.4. Given a connected graph, the system (10.3) is controllable if
and only if L(G) and Af do not share an eigenvalue.

Proof. We can reformulate the lemma as stating that the system is uncon-
trollable if and only if there exists at least one common eigenvalue between
L(G) and Af .

Suppose that the system is uncontrollable. Then by Proposition 10.3 there
exists a vector νi ∈ Rnf such that Afνi = λνi for some λ ∈ R, with

BT
f νi = 0.

Now, since [
Af Bf

BT
f Ai

] [
νi

0

]
=
[

Afνi

BT
f νi

]
= λ

[
νi

0

]
,

λ is also an eigenvalue to Af , with eigenvector [νT
i , 0]T . The necessary

condition thus follows.

260 CHAPTER 10

It suffices to show that if L(G) and Af share an eigenvalue, then the
system (Af , Bf) is not controllable. Since Af is a principal submatrix of
L(G), it can be represented as

Af = P T
f L(G)Pf ,

where Pf = [Inf
, 0]T is the n × nf matrix. Now, if Af and L(G) share a

common eigenvalue, say λ, then the corresponding eigenvector satisfies

ν = Pfνf =
[

νf

0

]
,

where ν and νf are, respectively, the eigenvectors of L(G) and Af corre-
sponding to eigenvalue λ. Moreover, we know that

L(G)ν =
[

Af Bf

BT
f Ai

] [
νf

0

]
= λ

[
νf

0

]
,

which gives us BT
f νf = 0; thus the system is uncontrollable.

10.2 GRAPH THEORETIC CONTROLLABILITY: THE SISO CASE

Our goal in this section is to make connections between the controllability
and observability of the SISO agreement protocol and the structural proper-
ties of the underlying network. This is done by making a few observations
and then proceeding to make tighter connections between graph theoretic
and system theoretic facets of such networks. Our analysis will be provided
in the context of the controllability of the agreement protocol with a single
input; however, we will state the direct ramifications of this analysis in terms
of the observability of (10.3) - (10.4).

First, we note that in view of the form of the input matrix Bf (10.5),
the original Laplacian L(G) is related to the Laplacian of the floating graph
L(Gf) via

L(G) =
[

L(Gf) + ∆f −δn

−δT
n dn

]
, (10.11)

where dn denotes the degree of the input node vn, ∆f is the input-to-state
degree matrix, and δn is the indicator vector for the floating graph. Since
controllability for linear systems is essentially a linear algebraic statement,
we proceed to build the necessary linear algebraic means of reasoning about
the structure of the graph. The following observations are all part of this
overall agenda.

AGREEMENT WITH INPUTS AND OUTPUTS 261

Proposition 10.5. If the original network G is connected then the system
matrix Af for the single-input network (10.3) is full rank.

Proof. See Lemma 10.36.

Corollary 10.6. The controlled agreement protocol (10.3) is controllable if
and only if none of the eigenvectors of Af are orthogonal to 1.

Proof. Since, according to (10.31), Af1 = Bf1 in the single-input case, the
elements of Bf correspond to the negation of the row sums of Af , that is,
Bf = −Af 1. Thus,

νT Bf = −νT Af 1 = −λ (νT 1).

By Proposition 10.5, one has λ �= 0. Therefore, νT Bf = 0 if and only if
1T ν = 0.

Proposition 10.7. If the single-input network (10.3) is uncontrollable, then
there exists an eigenvector ν of Af such that∑

i∼n

ν(i) = 0.

Proof. From Corollary 10.6, when the system is uncontrollable, there exists
an eigenvector ν orthogonal to 1. As

Af ν = λ ν,

taking the inner product of both sides with 1, we obtain

1T (Af ν) = 0.

This is equivalent to

νT {L(Gf) + ∆f } 1 = 0.

But L(Gf)1 = 0 and so

νT ∆f 1 = νT δn =
∑
i∼n

ν(i) = 0.

Proposition 10.8. Suppose that the single-input network (10.3) is uncon-
trollable. Then there exists an eigenvector of L(G) that has a zero compo-
nent on the index that corresponds to the input.

262 CHAPTER 10

Proof. Let ν be an eigenvector of Af that is orthogonal to 1 (by Corollary
10.6 such an eigenvector exists). Attach a zero to ν; using the partitioning
(10.11), we then have

L(G)
[

ν
0

]
=
[

A −δn

−δT
n dn

] [
ν
0

]
=
[

λν
−δT

n ν

]
,

where δn is the indicator vector for the floating nodes. From Proposi-
tion 10.7 we know that δT

n ν = 0. Thus

L(G)
[

ν
0

]
= λ

[
ν
0

]
.

In the other words, L(G) has an eigenvector with a zero on the index that
corresponds to the input.

A direct consequence of Proposition 10.8 is the following:

Corollary 10.9. Suppose that none of the eigenvectors of L(G) have a zero
component. Then the single-input network (10.3) is controllable for any
choice of input node.

10.2.1 Controllability and Graph Symmetry

The controllability of the single-input agreement protocol depends not only
on the topology of the information exchange network, but also on the po-
sition of the input with respect to the graph topology. In this section, we
will show that there is an intricate relationship between the controllability
of (10.3) and the symmetry structure of the graph as captured by its auto-
morphism group. We first need to introduce a few useful constructs.

Definition 10.10. A permutation matrix is a {0,1}-matrix with a single
nonzero element in each row and column. The permutation matrix J is
called an involution if J2 = I .

A particular class of permutations, which will play a crucial role shortly,
are those that characterize symmetries.

Definition 10.11. The system (10.3) is input symmetric with respect to the
input node if there exists a nonidentity permutation J such that

JAf = AfJ. (10.12)

We call the system asymmetric if it does not admit such a permutation for
any choice of input node.

AGREEMENT WITH INPUTS AND OUTPUTS 263

1 2 3 4

5

(a)
1 2

34

(b)

Figure 10.4: Network topologies that are input symmetric: (a) only with
respect to input {5}; and (b) with respect to an input at any node

As an example, the graph in Figure 10.4(a) is input symmetric only with
respect to {5} as the input node. The graph in Figure 10.4(b) is input sym-
metric with respect to any single, arbitrarily chosen input node.

10.2.2 Input-symmetry via Graph Automorphisms

Before we demonstrate the utility of input symmetry in the context of net-
work controllability, let us further refine the connection between input sym-
metry and graph automorphisms. Recall from Definition 10.11 that input
symmetry for (10.3) - (10.4) corresponds to having

JAf = AfJ,

where J is a nonidentity permutation. However, we know that

Af = −(L(Gf) + Dfl(G)).

Thus, using the identity L(Gf) = D(Gf) −A(Gf), one has

J
(
D(Gf)−A(Gf)+Dfl(G)

)
=
(
D(Gf)−A(Gf) +Dfl(G)

)
J. (10.13)

Pre- and postmultiplication by (a permutation matrix) J does not change
the structure of diagonal matrices. Also, we know that all diagonal elements
of A(G) are zero. As a consequence, we can rewrite (10.13) as two separate
conditions,

JDf (G) = Df (G)J and JA(Gf) = A(Gf)J, (10.14)

with Df (G) = D(Gf) + Dfl(G). The second equality in (10.14) states that
J in (10.12) is in fact an automorphism of Gf .

Proposition 10.12. Let Ψ be the matrix associated with permutation ψ.
Then

ΨDf (G) = Df (G)Ψ

264 CHAPTER 10

if and only if, for all i,

d(i) + δn(i) = d(ψ(i)) + δn(ψ(i)).

In the case where ψ is an automorphism of Gf , this condition simplifies to

δn(i) = δn(ψ(i)) for all i.

Proof. Using the properties of permutation matrices, one has that

[ΨDf (G)]ik =
∑

t

ΨitDtk =
{

d(k) + δn(k) if i → k,
0 otherwise,

and

[Df (G)Ψ]ik =
∑

t

Dit Ψtk =
{

d(i) + δn(i) if i → k,
0 otherwise.

For these matrices to be equal elementwise, one needs to have d(i)+δn(i) =
d(k) + δn(k) when ψ(i) = k. The second statement in the proposition
follows from the fact that the degree of a node remains invariant under the
action of the automorphism group.

The next two results follow immediately from the above discussion.

Proposition 10.13. The networked system (10.3) is input symmetric if and
only if there is a nonidentity automorphism for Gf such that the input indi-
cator vector remains invariant under its action.

Corollary 10.14. The networked system (10.3) is input asymmetric if the
automorphism group of the floating graph only contains the trivial (identity)
permutation.

10.2.3 Controllability Revisited

Although input symmetries and graph automorphisms are quite fascinating
in their own rights, they are also highly relevant to the system theoretic
concept of controllability. In fact, this connection is one of the main results
of this chapter.

Theorem 10.15. The system (10.3) is uncontrollable if it is input symmet-
ric. Equivalently, the system (10.3) is uncontrollable if the floating graph
admits a nonidentity automorphism for which the input indicator vector
remains invariant under its action.

AGREEMENT WITH INPUTS AND OUTPUTS 265

Proof. If the system is input symmetric then there is a nonidentity permuta-
tion J such that

JAf = AfJ. (10.15)

Recall that, by Proposition 10.3, if the eigenvalues of Af are not distinct
then (10.3) is not controllable. We thus consider the case where all eigen-
values λ are distinct and satisfy Afν = λν; therefore, for all eigenvalue-
eigenvector pair (λ, ν), one has

JAf ν = J(λν).

Using (10.15) however,

Af (Jν) = λ (Jν),

and as a result Jν is also an eigenvector of Af corresponding to the eigen-
value λ. Given that λ is distinct and Af admits a set of orthonormal eigen-
vectors, we conclude that for one such eigenvector ν, ν − Jν is also an
eigenvector of Af . Moreover, JBf = JT Bf = Bf , as the elements of
Bf correspond to the row sums of the matrix Af , that is, Bf = −Af 1.
Therefore,

(ν − Jν)T Bf = νT Bf − νT JT Bf = νT Bf − νT Bf = 0. (10.16)

This, on the other hand, translates to having one of the eigenvectors of Af ,
namely, ν −Jν, be orthogonal to Bf . Proposition 10.3 now implies that the
system (10.3) is uncontrollable, and the result follows.

Theorem 10.15 states that input symmetry is a sufficient condition for
uncontrollability of the system. It is instructive to examine whether the lack
of such symmetry automatically leads to a controllable system.

Proposition 10.16. Input symmetry is not a necessary condition for system
uncontrollability.

Proof. In Figure 10.5, the subgraph shown by solid lines, Gf , is the smallest
asymmetric graph in the sense that it does not admit a nonidentity automor-
phism. Let us augment this graph with the input node a and connect it to all
vertices of Gf . Constructing the corresponding system matrix Af (that is,
setting it equal to −Lf (G)), we have

−Af = L(Gf) + Dfl(G) = L(Gf) + I,

where I is the identity matrix of proper dimensions. Consequently, Af has
the same set of eigenvectors as L(Gf). Since L(Gf) has an eigenvector

266 CHAPTER 10

1 2 3 4 5

6

a

Figure 10.5: Asymmetric information topology with respect to the input
node {a}. The subgraph shown by solid lines is the smallest asymmetric
graph.

orthogonal to 1, Af also has an eigenvector that is orthogonal to 1. Hence,
the network is not controllable. Yet the system is not symmetric with respect
to a.

In order to demonstrate the controllability notion for the single-input
agreement protocol (10.3), consider a path-like information network as shown
in Figure 10.6. In this figure, the last node is chosen as the input. By Propo-
sition 10.19, this system is controllable. The system matrices in (10.3) as-
sume the form

Af =

⎡⎣ −1 1 0
1 −2 1
0 1 −2

⎤⎦ and Bf =

⎡⎣ 0
0
1

⎤⎦ .

Using (10.33), one can find a controller that drives this network from any

1

2

3

4

anchor node

Figure 10.6: A path-like information exchange network.

initial state to an arbitrary final state. For this purpose, we chose to re-orient
the planar triangle on the node set {1, 2, 3}. The maneuver time is set to be
five seconds. Figure 10.7 shows the initial and final positions of the floating
nodes along with their respective trajectories.

Figure 10.8 depicts the input node state trajectory as needed to perform
the required maneuver. This trajectory corresponds to the speed of node

AGREEMENT WITH INPUTS AND OUTPUTS 267

4 2 0 2 4 6 8
4

2

0

2

4

6

8

x [m]

y
[m

]

#1

#2

#3

f#3

f#2
f#1

Figure 10.7: Initial and final positions of dynamic units and their respective
state trajectories. The final positions are labeled f.

4 in the x, y-plane. We note that, as there are no restrictions on the input
node’s state trajectory, the actual implementation of this control law can
become infeasible if the input node must physically assume the state that
it communicates to its neighbors–particularly when the maneuver time is
arbitrarily short. This observation is apparent in the previous example. In
this scenario, the speed of node 4 changes rather rapidly between 20 and
−50 m/s.

10.2.4 Controllability of Special Graphs

In this section, we investigate the controllability of ring and path graphs.

Proposition 10.17. A ring graph with only one input node is never control-
lable.

Proof. With only one input node in the ring graph, the floating graph Gf

becomes the path graph with one nontrivial automorphism, its mirror im-
age. Without loss of generality, choose the first node as the input and index

268 CHAPTER 10

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−60

−50

−40

−30

−20

−10

0

10

20

30

time [sec]

co
nt

ro
lle

r [
m

/s
]

ux

uy

Figure 10.8: The input node’s velocity acts as the control signal for a net-
worked system

the remaining floating nodes by a clockwise traversing of the ring. Then the
permutation i → n − i + 2 for i = 2, . . . , n is an automorphism of Gf .
Moreover, the input node is connected to both node 2 and node n; hence
δn = [1, 0, . . . , 0, 1]T remains invariant under the permutation. Using
Proposition 10.13, we conclude that the corresponding system (10.3) is in-
put symmetric and thus uncontrollable.

Proposition 10.18. A path graph with odd number of vertices is uncontrol-
lable from its center.

Proof. Suppose that the path graph is of odd order. Then choose the middle
node (n + 1)/2 as the input node. Note that ψ : k → n − k + 1 is an auto-
morphism for the floating subgraph. Moreover, the input node is connected
to nodes {(n + 1)/2} − 1 and {(n + 1)/2} + 1, and

ψ

(
n + 1

2
− 1
)

=
n + 1

2
+ 1.

AGREEMENT WITH INPUTS AND OUTPUTS 269

Thus

δn = [0, . . . , 0, 1, 1, 0, . . . 0]T

remains invariant under the permutation ψ and the system is uncontrollable.

Hence, although in general the notion of input symmetry is a sufficient–
yet not necessary–condition for uncontrollability of (10.3), it is necessary
and sufficient for uncontrollability of the path graph.

Corollary 10.19. A path graph endowed with the agreement protocol with
a single input node is controllable if and only if it is input asymmetric.

10.2.5 Observability from a Single Observer Post

Let us briefly summarize the main result of the previous sections in terms of
the agreement protocol equipped with a single output node. In this setting,
consider the system

ẋf (t) = −Af xf (t), (10.17)
y(t) = −BT

f x(t). (10.18)

Then the following observations are direct ramification of our results on the
controllability of (10.3).

Proposition 10.20. The system (10.18) - (10.18) is unobservable if it is
output symmetric. Equivalently, the system (10.18) - (10.18) is unobservable
if the floating graph admits a nonidentity automorphism for which the output
indicator vector remains invariant under its action.

10.3 GRAPH THEORETIC CONTROLLABILITY: THE MIMO CASE

In this section, we examine the graph theoretic connection between network
topology and controllability for the agreement protocol equipped with mul-
tiple inputs and outputs. As our subsequent discussion will show, in this case
one needs an additional set of graph theoretic tools–namely, the machinery
of equitable partitions–to analyze the network controllability.

The way we approach establishing this correspondence is through linear
algebra, the common ground between linear system theory and equitable
partitions. In particular, our approach starts from Lemma 10.4, which holds
for both the SISO and the MIMO case. This is followed by showing that the
matrices L(G) and Af are both similar to some particular block diagonal

270 CHAPTER 10

matrices. Furthermore, we show that under certain assumptions the diago-
nal block matrices obtained from the diagonalization of L(G) and Af have
common diagonal block(s).

Lemma 10.21. If a graph G has a nontrivial equitable partition (NEP)
π with characteristic matrix P , then the corresponding adjacency matrix
A(G) is similar to a block diagonal matrix

Ā =
[
AP 0
0 AQ

]
,

where AP is similar to the adjacency matrix Â = A(G/π) of the quotient
graph.

Proof. Let the matrix T = [P̄ | Q̄] be the orthonormal matrix with respect
to π, and let

Ā = T TAT =
[

P̄ T A(G)P̄ P̄ T A(G)Q̄
Q̄T A(G)P̄ Q̄T A(G)Q̄

]
. (10.19)

Since P̄ and Q̄ have the same column spaces as P and Q, respectively, they
inherit their A(G)-invariance property, that is, there exist matrices B and C
such that

A(G)P̄ = P̄B and A(G)Q̄ = Q̄C.

Moreover, since the column spaces of P̄ and Q̄ are orthogonal complements
of each other, one has

P̄ T A(G)Q̄ = P̄ T Q̄C = 0

and

Q̄T A(G)P̄ = Q̄T P̄B = 0.

In addition, by letting D2
p = P T P , we obtain

P̄ T A(G)P̄ = D−1
P P T A(G)PD−1

P

= DP (D−2
P P T A(G)P)D−1

P

= DP ÂD−1
P ,

(10.20)

and therefore the first diagonal block is similar toÂ.

AGREEMENT WITH INPUTS AND OUTPUTS 271

Lemma 10.22. Let P be the characteristic matrix of an NEP in G. Then
R(P) isK-invariant, where K is any diagonal block matrix of the form

K = Diag([k1, . . . , k1︸ ︷︷ ︸
n1

, k2, . . . , k2︸ ︷︷ ︸
n2

, . . . , kr, . . . , kr︸ ︷︷ ︸
nr

]T) = Diag([ki1ni]
r
i=1),

where ki ∈ R, ni = card(Ci) is the cardinality of the ith cell and r = |π|
is the cardinality of the partition. Consequently,

Q̄T KP̄ = 0,

where P̄ = P (P T P)−
1
2 and Q̄ is chosen in such a way that T = [P̄ | Q̄] is

an orthonormal matrix.

Proof. We note that

P =

⎡⎢⎢⎢⎣
P1

P2
...

Pr

⎤⎥⎥⎥⎦ =
[

p1 p2 . . . pr

]
,

where Pi ∈ Rni×r is a row block which has 1s in column i and 0s elsewhere.
On the other hand, pi is a characteristic vector representing Ci, which has
1s in the positions associated with Ci and 0s elsewhere.

Recalling the example given in (2.20), with

P =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ , (10.21)

we can then find

P2 =
[

0 1 0 0
0 1 0 0

]
,

while p2 = [0, 1, 1, 0, 0]T . A little algebra reveals that

KP =

⎡⎢⎢⎢⎣
k1P1

k2P2
...

krPr

⎤⎥⎥⎥⎦ =
[

k1p1 k2p2 · · · krpr

]
= PK̂,

272 CHAPTER 10

where K̂ = Diag([k1, k2, . . . , kr]T) = Diag([ki]ri=1); hence R(P) is K-
invariant. Since R(Q̄) = R(P)⊥, it is K-invariant as well, and

Q̄T KP̄ = Q̄T P̄ K̂ = 0.

By the definition of equitable partitions, the subgraph induced by a cell is
regular and every node in the same cell has the same number of neighbors
outside the cell. Therefore, the nodes belonging to the same cell have the
same degree, and thus by Lemma 10.22, R(Q̄) and R(P) are ∆-invariant,
where ∆ is the degree matrix given by

∆ = Diag([di1ni]
r
i=1),

with di ∈ R denoting the degree of the nodes in cell i.
Since the graph Laplacian satisfies L(G) = ∆(G)−A(G), Lemmas 10.21

and 10.22 imply that R(Q̄) and R(P) are L(G)-invariant. We have thus
obtained the following corollary.

Corollary 10.23. Given the same condition as in Lemma 10.21, L(G) is
similar to a diagonal block matrix

T T L(G)T =
[

LP 0
0 LQ

]
, (10.22)

where LP = P̄ T L(G)P̄ and LQ = Q̄T L(G)Q̄, and T = [P̄ | Q̄] defines an
orthonormal basis for Rn with respect to π.

As (10.22) defines a similarity transformation, it follows that LP and LQ

carry all the spectral information of L(G), that is, they share the same eigen-
values as L(G). And, as the input-output designation in the agreement pro-
tocol partitions the graph Laplacian as

L(G) =
[

Af Bf

BT
f Ai

]
,

transformations similar to (10.22) can also be found for Af in the presence
of NEPs in the floating graph Gf .

Corollary 10.24. Let Gf be a floating graph, and let Af be the submatrix of
L(G) corresponding to Gf . If there is a NEP πf in Gf and a π in G, such that
all the nontrivial cells in πf are also cells in π, there exists an orthonormal
matrix Tf such that

Āf = T T
f AfTf =

[
AfP 0

0 AfQ

]
. (10.23)

AGREEMENT WITH INPUTS AND OUTPUTS 273

Proof. Let P̄f = Pf (P T
f Pf)

1
2 , where Pf is the characteristic matrix for πf .

Moreover, let Q̄f be defined on an orthonormal basis of R(Pf)⊥. In this
way, we obtain an orthonormal basis for Rnf with respect to πf . Moreover,
by (10.7), Af = Dl

f (G) + L(Gf), where L(Gf) denotes the Laplacian ma-
trix of Gf while Dl

f is the diagonal input-to-state degree matrix defined in
(10.6). Since all the nontrivial cells in πf are also cells in π, Df satisfies the
condition in Lemma 10.22, that is, nodes from an identical cell in πf have
the same degree. Hence, by Lemma 10.21 and Lemma 10.22, R(P̄f) and
R(Q̄f) are Af -invariant, and consequently

Āf = T T
f AfTf =

[
AfP 0

0 AfQ

]
, (10.24)

where Tf = [P̄f | Q̄f], AfP = P̄ T
f Af P̄f and AfQ = Q̄T

f Af Q̄f .

Again, the diagonal blocks of Āf contain the complete spectral informa-
tion of Af . We are now in the position to prove the main result of this
section.

Theorem 10.25. Given a connected graph G and the induced floating
graph Gf , the system (10.3) is not controllable if there exist NEPs on G
and Gf , say π and πf , such that all nontrivial cells of π are contained in
πf , that is, for all Ci ∈ π\πf , one has card(Ci) = 1.

Proof. In Corollary 10.23, we saw that L(G) and Af are similar to some
block diagonal matrices. Here we further expand on the relationship be-
tween these matrices.

Assume that π ∩ πf = {C1, C2, . . . , Cr1}. According to the underlying
condition, one has card(Ci) ≥ 2, i = 1, 2, . . . , r1. Without loss of general-
ity, we can index the nodes in such a way that the nontrivial cells comprise
the first n1 nodes,3 where

n1 =
r1∑

i=1

card(Ci) ≤ nf < n.

As all the nontrivial cells of π are in πf , their characteristic matrices have

3We have introduced n1 for notational convenience. It is easy to verify that n1 − r1 =
n − r = nf − rf .

274 CHAPTER 10

similar structures

P =
[

P1 0
0 In−n1

]
n×r

and Pf =
[

P1 0
0 Inf−n1

]
nf×rf

,

where P1 is an n1 × r1 matrix containing the nontrivial part of the char-
acteristic matrices. Since P̄ and P̄f are the normalizations of P and Pf ,
respectively, they have the same block structures. ConsequentlyQ̄ and Q̄f ,
the matrices containing orthonormal basis of R(P) and R(Pf), have the
structures

Q̄ =
[

Q1

0

]
n×(n1−r1)

and Q̄f =
[

Q1

0

]
nf×(n1−r1)

where Q1 is an n1 × (n1 − r1) matrix that satisfies

QT
1 P1 = 0.

We observe that Q̄f is different from Q̄ only by n − nf rows of zeros. In
other words, the special structures of Q̄ and Q̄f lead to the relationship

Qf = RT Q,

where R = [Inf
, 0]T . Now, recalling the definitions of LQ and LfQ from

(10.22) and (10.23) leads us to

LQ = Q̄T L(G)Q̄ = Q̄T
f RT L(G)RQ̄f = Q̄T

f Af Q̄f = LfQ. (10.25)

Therefore Lf and L(G) have the same eigenvalues associated with LQ;
hence by Lemma 10.4, the system is not controllable.

Theorem 10.25 provides a method to identify uncontrollable multiagent
systems in the presence of multiple inputs. In an uncontrollable multiagent
system, vertices in the same cell of an NEP, satisfying the condition in The-
orem 10.25, are not distinguishable from the input nodes’ point of view. In
other words, agents belonging to a shared cell among π and πf , when iden-
tically initialized, remain undistinguished to the input nodes throughout the
system evolution. Moreover, the controllable subspace for this multiagent
system can be obtained by collapsing all the nodes in the same cell into a
single “meta-agent.”

Two immediate ramifications of the above theorem are as follows.

Corollary 10.26. Given a connected graph G with the induced floating node
graph Gf , a necessary condition for (10.3) to be controllable is that no NEPs
π and πf , on G and Gf , respectively, share a nontrivial cell.

AGREEMENT WITH INPUTS AND OUTPUTS 275

Corollary 10.27. If G is disconnected, a necessary condition for (10.3) to
be controllable is that all of its connected components are controllable.

Example 10.28. In Figure 2.12, if we choose node 5 as the leader, the sym-
metric pair (2,3) in the floating graph renders the network uncontrollable.
The dimension of the controllable subspace is three, while there are four
nodes in the follower group. This result can also be interpreted via Theo-
rem 10.25, since the corresponding automorphisms introduce equitable par-
titions.

Example 10.29. We have shown in Figure 2.11 that the Peterson graph has
two NEPs. One is introduced by the automorphism group and the other, π2,
by the equal distance partition. Based on π2, if we choose node 1 as the
input node, the network ends up with a controllable subspace of dimension
two. Since there are four orbits in the automorphism group,4 this dimension
pertains to the two-cell equal distance partitions.5

Example 10.30. This example is a modified graph based on the Peterson
graph. In Figure 10.9, we add another node (11) connected to the nodes in
the set {3, 4, 7, 8, 9, 10} as the second leader in addition to node 1. In this
network, there is an equal distance partition with four cells, {1}, {2, 5, 6}
{3, 4, 7, 8, 9, 10} and {11}. In this case, the dimension of the controllable
subspace is still two, which is consistent with Example 10.29.

1

2

3 4

5

6

7

8 9

10

11

Figure 10.9: A two-leader network based on the Peterson graph

4They are {2, 5, 6}, {7, 10}, {8, 9}, {3, 4}
5They are {2, 5, 6} and {3, 4, 7, 8, 9, 10}.

276 CHAPTER 10

10.4 AGREEMENT REACHABILITY

Equipped with a collection of controllability results, we now shift our atten-
tion to the issue of whether we can steer the system to agreement subspace,
for which we first need some additional notation.

10.4.1 Representation

Another way to construct the system matrices Af and Bf in (10.3) - (10.4)
is from the Laplacian of the original graph via

Af = P T
f L(G)Pf and Bf = P T

f L(G)Tfl, (10.26)

where Pf ∈ Rn×nf is constructed by eliminating the columns of the n × n
identity matrix that correspond to the input nodes, and Tfl ∈ Rn×nl is
formed by grouping these eliminated columns in a new matrix.

For example, in Figure 10.2, these matrices assume the form

Pf =
[

I4

02×4

]
and Tfl =

[
04×2

I2

]
.

Proposition 10.31. If a single node is chosen as the input node, one has

Tfl = (In − P̃)1n and lfl = −Af1nf

in (10.26), where P̃ = [Pf 0n×nl
] is the n × n square matrix obtained by

expanding Pf with a zero block of proper dimensions.

Proof. The first equality follows directly from the definitions of Pf and Tfl.
Without loss of generality, assume that the last node is the input node; then
[Pf Tfl] = In. Multiplying both sides by 1n and noting that P̃ 1n = Pf1nf

,
one has Tfl = (In − P̃)1n.

Moreover,

�fl = P T
f L(G){(I − P̃)1n} = P T

f L(G)1n − P T
f L(G)Pf1nf

. (10.27)

The first term on the right-hand side of the equality is zero as 1 belongs to
the null space of L(G); the second term is simply Af1.

Alternatively, for the case when the exogenous signal is constant, the dy-
namics can be rewritten as[

ẋf (t)
u̇(t)

]
= −

[
Af Bf

0 0

] [
xf (t)
u(t)

]
. (10.28)

AGREEMENT WITH INPUTS AND OUTPUTS 277

This corresponds to zeroing-out the rows of the original graph Laplacian as-
sociated with the leader. Zeroing-out a row of a matrix can be accomplished
via a reduced identity matrix Qr, with zeros at the diagonal elements that
correspond to the leaders and all other diagonal elements being kept as one.
In this case [

Af Bf

0 0

]
= QrL(G), (10.29)

where

Qr =
[

Inf
0

0 0

]
,

and all the zero matrices are of appropriate dimensions.

10.4.2 Steering to the Agreement Subspace

First, we examine whether we can steer the controlled agreement protocol to
the agreement subspace, span{1}, when the exogenous signal is constant,
that is, xi = c, for all i ∈ Vi and c ∈ R is a constant. As shown in (10.29),
in this case the controlled agreement can be represented as

ẋ(t) = −QrL(G)x(t) = −Lr(G)x(t), (10.30)

where Qr is the reduced identity matrix and Lr(G) = QrL(G) is the re-
duced Laplacian matrix.

Let us now examine the convergence properties of (10.30) with respect to
span{1}. Define ζ(t) as the projection of the followers’ state xf (t) onto the
subspace orthogonal to the agreement subspace span{1}. This subspace is
denoted by 1⊥ and it is sometimes referred to as the disagreement subspace.

One can then model the disagreement dynamics as

ζ̇(t) = −Lr(G) ζ(t). (10.31)

Choosing a standard quadratic Lyapunov function for (10.31),

V (ζ(t)) =
1
2

ζ(t)T ζ(t),

reveals that its time rate of change assumes the form

V̇ (ζ(t)) = −ζ(t)T Lr(G) ζ(t),

where Lr(G) = (1/2) [Lr(G) + Lr(G)T].

278 CHAPTER 10

Proposition 10.32. The agreement subspace is reachable for the controlled
agreement protocol.

Proof. Since V̇ (ζ) < 0 for all ζ �= 0 and QrL(G) 1 = 0, for any input
nodes, the agreement subspace remains a globally attractive subspace for
(10.30).

Proposition 10.33. In the case of a single input node, the matrix Lr(G) has
a real spectrum and the same number of zero and positive eigenvalues as
L(G).

Proof. Let E = 11T denote the matrix of all ones. Since EL(G) = 0 and
QrL(G) = Lr(G), we have that

(Qr + E)L(G) = Lr(G).

Hence Lr(G) is a product of a positive definite matrix, namely, Qr +E, and
the symmetric matrix L(G). As a consequence, Lr(G) is diagonalizable and
has a real spectrum, it has the same number of zero and positive eigenvalues
as L(G).

10.4.3 Rate of Convergence

In previous sections, we discussed the controllability properties of the con-
trolled agreement dynamics in terms of the symmetry structure of the net-
work. When the resulting system is controllable, the nodes can reach agree-
ment arbitrary fast.

Proposition 10.34. A controllable agreement dynamics can reach the agree-
ment subspace arbitrarily fast.

Proof. The (invertible) controllability Gramian for the controlled agreement
dynamics is defined as

Wa(t0, tf) =
∫ tf

t0

esAf BfBT
f esAT

f ds. (10.32)

For any tf > t0, the input node can then transmit the signal

u(t) = BT
f eAT

f (tf−t0)Wa(t0, tf)−1
(
xf − eAf (tf−t0)x0

)
, (10.33)

to its neighbors; in (10.33) x0 and xf are the initial and final states for the
floating nodes, and t0 and tf are the prespecified initial and final maneuver
times.

AGREEMENT WITH INPUTS AND OUTPUTS 279

Next, let us examine the convergence properties of the input network with
an input node that transmits a constant signal (10.30). In this venue, define
the quantity

µ2(Lr(G)) = min
ζ �= 0
ζ⊥1

ζT Lr(G) ζ

ζT ζ
. (10.34)

Proposition 10.35. The rate of convergence of the disagreement dynam-
ics (10.31) is bounded by µ2(Lr(G)) and λ2(L(G)), when the input node
transmits a constant signal.

Proof. Using the variational characterization of the second smallest eigen-
value of graph Laplacian, we have

λ2(L(G)) = min
ζ �= 0
ζ⊥1

ζTL(G)ζ
ζT ζ

≤ min
ζ �= 0
ζ⊥1

ζ = Qβ

ζT L(G)ζ
ζT ζ

= min
Qβ �= 0
Qβ⊥1

βT QL(G)Qβ

βT Qβ

= min
Qβ �= 0
Qβ⊥1

βT Q
{

1
2(QL(G) + L(G)Q)

}
Qβ

βT Qβ

= min
Qβ �= 0
Qβ⊥1

βT Q
(

1
2 (Lr(G) + Lr(G)T)

)
Qβ

βT Qβ

= min
ζ �= 0
ζ⊥1

ζTLr(G)ζ
ζT ζ

= µ2(Lr(G)),

where β is an arbitrary vector with the appropriate dimension, Q is the ma-
trix introduced in (10.29), and Q2 = Q. In the last variational statement,
we observe that ζ should have a special structure, that is, ζ = Qβ (a zero at
the row corresponding to the leader). An examination of the error dynam-
ics suggests that such a structure always exists. As the input node does not

280 CHAPTER 10

update its value, the difference between the input node’s state and the agree-
ment value is always zero. Thus, with respect to the disagreement dynamics
(10.31),

V̇ (ζ) = −ζT Lr(G) ζ ≤ −µ2(Lr(G))ζT ζ ≤ −λ2(L(G)) ζT ζ.

It is intuitive that a highly connected input node (or anchor) will result in
faster convergence to the agreement subspace. However, a highly connected
anchor also increases the chances that a symmetric graph (with respect to
the anchor) emerges. A limiting case for this latter scenario is the complete
graph. In such a graph, n−1 anchors are needed to make the corresponding
system controllable. This requirement is of course not generally desirable
as it means that the anchor group includes all nodes except one! The com-
plete graph is in fact the the “worst case” configuration for its controllability
properties.

Generally, at most n− 1 anchors are needed to make any information ex-
change network controllable. In the meantime, a path graph with an anchor
at one end is controllable. Thus it is possible to make a complete graph con-
trollable by keeping the links on the longest path between an anchor and all
other nodes, deleting the unnecessary information exchange links to break
its inherent symmetry. This procedure is not always feasible; for example,
a star graph is not amenable to such graphical alterations.

10.5 NETWORK FEEDBACK

Once one starts thinking of networks as dynamical systems, by viewing
individual nodes as inputs, it becomes imperative to investigate how this
point of view can be used to make the network perform useful things.

Loosely speaking, one can think of the problems under investigation in
this chapter as variants of the “autonomous sheep-herding” problem. In
other words, how should the herding dogs move in order to maneuver the
herd in the desired way? Based on the previous sections, we can select the
leaders (herding dogs) 6 as inputs to the network. Once such a set of leaders
is selected, we will apply optimal control techniques for driving the system
between specified positions. In fact, it will be shown that this problem is
equivalent to the problem of driving an invertible linear system between

6In this section, we use “leaders” for the input nodes and “followers” for the floating
nodes, due to the historic robotics context in which this notation arose.

AGREEMENT WITH INPUTS AND OUTPUTS 281

quasi-static equilibrium points.7
As before, we will let the state of an individual agent be described by a

vector in Rn. Moreover, under the linear agreement protocol, the dynamics
along each dimension can be decoupled, which allows us to analyze the
performance of our proposed control methods along a single dimension.8 In
other words, let xi ∈ R, i = 1, 2, . . . , n, be the state of the ith agent, and let
x(t) = [x1(t), x2(t), . . . , xn(t)]T be the state vector of the group of agents,
where n is the total number of agents. As we have seen, the agreement
protocol will solve the rendezvous problem (drive all agents to a common
point) as long as the network is connected. We will use this as the basic
coordination scheme executed by the follower agents. The reason for this
is not that we are interested in solving the rendezvous problem per se, but
rather that it provides some cohesion among the follower agents.

Given the partition of the network into leaders and followers, as specified
in (10.2), we have the following refinement of Propositions 10.5 and 10.33.

Lemma 10.36. If the graph is connected, then the matrix Af is positive
definite.

Proof. We know that L(G) is positive semidefinite. In addition, if the graph
G is connected, we have that N (L(G)) = span{1}. Moreover, since

xT
f Afxf = [xT

f 0]L(G)
[

xf

0

]
and [xT

f 0]T /∈ N (L(G)), when xf �= 0, we have that

[xT
f 0]L(G)

[
xf

0

]
> 0 for all nonzero xf ∈ Rnf ,

and the statement of the lemma follows.

As we have seen repeatedly throughout this book, the agreement pro-
tocol works because it averages the contribution from all neighbors in a
distributed way. As such, it seems like a natural starting point when deter-
mining the movements of the followers, that is, by letting

ẋf (t) = −Afxf (t) − Bfxl(t). (10.35)

7A process is called quasi static when it follows a succession of equilibrium states. In
such a process, a sufficiently slow transition of a thermodynamic system from one equilib
rium state to another occurs such that at every moment in time the state of the system is close
to an equilibrium state.

8See Chapter 3.

282 CHAPTER 10

Theorem 10.37. Given fixed leader positions xl, the quasi-static equilib-
rium point under the follower dynamics in (10.35) is

xf = −A−1
f Bfxl, (10.36)

which is globally asymptotically stable.

Proof. From the previous lemma, we know that Lf is invertible and hence
(10.36) is well defined. Hence the equilibrium point is unique. Moreover,
since Lf is positive definite, this equilibrium point is in fact globally asymp-
totically stable.

10.6 OPTIMAL CONTROL

Since we will be using the leader positions as the inputs to the network,
for the sake of notational convenience (and to harmonize with the standard
notation in the controls literature), we will equate xf with x and xl with u
throughout this section. Moreover, we will identify A with −Af and B with
−Bf . Using this notation, the leader-follower system can be rewritten as

ẋ(t) = Ax(t) + Bu(t). (10.37)

Moreover, since the leaders are unconstrained in their motion, we let

u̇(t) = v(t),

where v(t) is the control input.
For a fixed u, the quasi-static equilibrium to (10.37) is given by

x∗ = −A−1Bu. (10.38)

An example of letting a single leader agent drive three followers close
(in the least squares sense) to a number of intermediary targets is shown in
Figure 10.10.

The problem under consideration here is the quasi-static equilibrium pro-
cess problem, that is, the problem of transferring (x, u) from an initial point
satisfying (10.38) to a final point also satisfying (10.38). Moreover, we want
to achieve this in a finite amount of time, and we define our performance
function as follows:

J =
1
2

∫ T

0

(
ẋ(t)T Pẋ(t) + u̇(t)T Qu̇(t)

)
dt, (10.39)

AGREEMENT WITH INPUTS AND OUTPUTS 283

20 10 0 10 20 30 40 50 60 70

20

10

0

10

20

30

40

50

x

y

Figure 10.10: Starting at a formation close to (0, 50) at time t = 0, the
leader (thick curve) maneuvers the followers to the new positions close to
(0, 0) at t = 5, and close to (50, 0) at t = 10. This is done while expending
the smallest possible control energy.

where P and Q are assumed to be positive semidefinite and positive definite,
respectively. The optimal control problem can now be formulated as

min
v

J, (10.40)

under the constraints that ẋ(t) = Ax(t) + Bu(t), with the boundary condi-
tions x(0) = −A−1Bu0 and x(T) = −A−1BuT , given u0 and uT .

It should be noted that we do not, in fact, need for the network to be con-
trollable in this particular case, even though, for the general point-to-point
transfer problem, we do need controllability. To see this assume, without
loss of generality, that we have a (partial) Kalman decomposition,

ẋ =
[

ẋc(t)
ẋu(t)

]
=
[

A11 A12

0 A22

] [
xc(t)
xu(t)

]
+
[

B1

0

]
u(t),

where xc is controllable and xu is uncontrollable.9 Now, given a fixed ue,
where the superscript e denotes equilibrium, the quasi-static equilibrium is

9We referred to this as partial Kalman decomposition since there is no observation matrix
involved.

284 CHAPTER 10

given by

0 =
[

A11x
e
c + A12x

e
u + B1u

e

A22x
e
u

]
.

Since A is invertible (and hence also A22), this means that xe
u = 0. Hence

the quasi-static process will simply drive xu(0) = 0 to xu(T) = 0 and we
can restrict our attention to the nontrivial part of the system, namely,

ẋc(t) = A11xc(t) + A12xu(t) + B1u(t).

But, since xu(t) = 0 on the interval [0, T], we only have

ẋc(t) = A11xc(t) + B1u(t),

and since (A11, B1) is a controllable pair, point-to-point transfer is always
possible.

Now, in order to solve the optimal control problem,10 we first form the
Hamiltonian

H =
1
2
(ẋ(t)T Pẋ(t) + u̇(t)T Qu̇(t)) + λ(t)T (Ax(t) + Bu(t)) + µ(t)T v(t)

=
1
2

[
x(t)T AT PAx(t) + 2x(t)T AT PBu(t) + u(t)T BTPBu(t)

+ v(t)T Qv(t)
]

+ λ(t)T (Ax(t) + Bu(t)) + µ(t)T v(t),
(10.41)

where λ and µ are the co-states. The first-order necessary optimality condi-
tion then gives

∂H
∂v

= vT Q + µT = 0 ⇒ v = −Q−1µ,

λ̇(t) = −
(

∂H
∂x

)T

= −AT PAx(t) − AT PBu(t) − AT λ(t),

µ̇(t) = −
(

∂H
∂u

)T

= −BTPAx(t) − BTPBu(t) − BT λ(t).

(10.42)

In other words, by letting z(t) = [x(t)T , u(t)T , λ(t)T , µ(t)T]T , we obtain
the Hamiltonian system

ż(t) = Mz(t), (10.43)

10See Notes and References for pointers to references on optimal control.

AGREEMENT WITH INPUTS AND OUTPUTS 285

where

M =

⎡⎢⎢⎣
A B 0 0
0 0 0 −Q−1

−AT PA −AT PB −AT 0
−BTPA −BT PB −BT 0

⎤⎥⎥⎦ ;

it now suffices to find the initial conditions on the co-states. For this, we let
the initial state be given by

z0 = [xT
0 , uT

0 , λT
0 , µT

0]T ,

where x0 = −A−1Bu0, and λ0 and µ0 are unknown parameters that should
be properly chosen. In fact, the problem is exactly that of selecting λ0 and
µ0 in such a way that, through this choice, we get

x(T) = −A−1BuT = xT .

In order to achieve this, we partition the matrix exponential in the follow-
ing way

eMT =

⎡⎢⎢⎣
φxx φxu φxλ φxµ

φux φuu φuλ φuµ

φλx φλu φλλ φλµ

φµx φµu φµλ φµµ

⎤⎥⎥⎦ . (10.44)

We can find the initial conditions of the co-states by solving

[
xT

uT

]
=
[

φxx φxu φxλ φxµ

φux φuu φuλ φuµ

]⎡⎢⎢⎣
x0

u0

λ0

µ0

⎤⎥⎥⎦ .

Now, let

Φ1 =
[

φxx φxu

φux φuu

]
and Φ2 =

[
φxλ φxµ

φuλ φuµ

]
,

which gives

[
λ0

µ0

]
= Φ−1

2

([
xT

uT

]
− Φ1

[
x0

u0

])
.

Since we are considering a quasi-static process, we have

x0 = −A−1Bu0 and xT = −A−1BuT ,

286 CHAPTER 10

and hence the initial conditions of the co-states become[
λ0

µ0

]
= −Φ−1

2 Ψ
[

u0

uT

]
, Ψ =

[
φxxA

−1B − φxu −A−1B
φuxA−1B − φuu I

]
.

The invertibility of Φ2 follows directly from the fact that this particular
point-to-point transfer problem always has a unique solution.

As an example, Figure 10.11 shows a scalar quasi-static process, where
the dynamics of the system is given by ẋ(t) = −x(t) − u(t), and where
P and Q are both set to 1. The system starts from x0 = 1, u0 = −1 and
the desired final position is xT = −1, uT = 1. The dash-dotted line shows
the subspace {(x, u) | x = −A−1Bu}, while the solid line is the actual
trajectory of the system under the optimal control law with T = 2.

2 1.5 1 0.5 0 0.5 1 1.5 2
2

1.5

1

0.5

0

0.5

1

1.5

2

u

x

Quasi Equilibrium Process

Figure 10.11: A quasi-static process for the system ẋ = −x − u, with
P = Q = 1, x0 = 1, u0 = −1, xT = −1, uT = 1

10.6.1 Leader-Follower Herding

By applying the optimal control laws for quasi-static equilibrium processes,
we can now move the leader agents in such a way that the followers are
moved, in finite time, between desired positions. In Figure 10.12, snap-
shots of a herding process are shown where the leaders (black) move the

AGREEMENT WITH INPUTS AND OUTPUTS 287

followers (white) from an initial position to a final position. The lead-
ers’ initial and final positions are xl0 = {(−1,−1), (0, 1), (1,−1)} and
xlT = {(−1,−1), (0, 1), (1,−1)}, respectively. The followers’ positions
(equilibria) are determined by (10.36), and the time horizon is set to be one
second. The matrices P and Q in (10.39) are identity matrices of appropri-
ate dimensions.

SUMMARY

In this chapter, the focus was on what control theoretic properties one can
infer from a network by looking solely at the network topology, that is, at the
structure of the interaction graph. In particular, we considered the scenario
when a few node in the network are allowed to act as input and output nodes
to the system, and the remaining nodes are running the agreement protocol.
We then investigated the controllablility and observability of the resulting–
potentially– steered and observed network in a graph theoretic setting.

For controllability, the question becomes that of determining whether it
is possible to “drive” the states of all the floating nodes between arbitrary
values by adjusting the value of the input nodes. This would for instance
be useful if the nodes are mobile robots that are to be dispatched to a given
location, or if they are to execute different control programs based on some
internal state that we would wish to control through the input nodes. In par-
ticular, in this chapter we showed how the symmetry structure of a network
with a single input node, characterized in terms of its automorphism group,
directly relates to the controllability of the corresponding input system. In-
tuitively speaking, what this means is that if some nodes are symmetric with
respect to the leader (that is, the leader cannot “tell them apart”) then these
two nodes constitute an obstruction to controllability, rendering the system
not controllable. By duality, we also showed how a similar argument ap-
plies to the observability question as well in the case of a single output node
co-located with the input node.

These single input/output node results were then extended to the case
of multiple input/output nodes. In this case, the notion of symmetry is no
longer enough, and instead we introduced network equitable partitions as
means by which such controllability and observability characterizations can
be extended to networks with multiple inputs and outputs.

One consequence of viewing certain nodes as control inputs, while letting
the remaining nodes satisfy the agreement protocol, is that a number of con-
trol design tools become available for the resulting controlled LTI systems.
We also saw that the unforced system is globally asymptotically stable, and
that for a constant input (static leader location), the state of the system con-

288 CHAPTER 10

0.1sec

5

6

71

2

3

4

0.2sec

5

6

7

1

2

3

4

0.3sec

5

6
7

1

2

3
4

0.5sec

5

6

7

1

2
3
4

0.6sec

5

6

7

1

2
3

4

0 7sec

5

6

7

1

2
3

4

0.8sec

5

6
7

1

2
3 4

0.9sec

5

6
7

1

2

3 4

1sec

5

6 7

1

2

3 4

Figure 10.12: A quasi-static process where 3 leaders (black nodes) herd 4
followers (white nodes), where T = 1

verges to a point in the convex hull spanned by the static leader agents. This
observation was subsequently used to drive the resulting process between
quasi-static equilibrium points.

NOTES AND REFERENCES

The explicit study of networks in which certain nodes take on the role of
active input or output nodes, while the remaining nodes act as “floaters,” for
example, by executing the agreement protocol, was introduced in the context
of leader-follower robotics by Tanner in [229], where necessary and suffi-
cient conditions for system controllability were given in terms of the eigen-
vectors of the graph Laplacian. Subsequently, graph theoretic characteriza-
tions of controllability for leader-follower multiagent systems were exam-

AGREEMENT WITH INPUTS AND OUTPUTS 289

ined by Ji, Muhammad, and Egerstedt [127] and by Rahmani and Mesbahi
[199], where graph symmetries (defined through the automorphism group)
were introduced as a vehicle for understanding how the network topology
impacts the controllability properties. For more information on graphs and
their symmetry groups, see for example, Lauri and Scapellato [143]. The
matrix-based vantage point, as represented by the Popov-Belevitch-Hautus
test is, for example, discussed by Kailath [130].

The idea to view leader-based networks as controlled dynamical sys-
tems has appeared repeatedly in the literature. Notably, results along these
lines include Swaroop and Hedrick’s work on string stability [226], leader-
to-follower stability and control, for example, Desai, Ostrowski, and Ku-
mar [66] and Tanner, Pappas, and Kumar [231], virtual leader-based control,
as in Egerstedt and Hu [74] and Leonard and Fiorelli [145], and formation
control, for example, the works of Eren, Whiteley, Anderson, Morse, and
Belhumeur [78] and Beard, Lawton, and Hadaegh [17], just to name a few.
The particulars of the optimal control presentation of leader-based multia-
gent networks draws most of its inspiration from the works of Ji, Muham-
mad, and Egerstedt [127] and Björkenstam, Ji, Egerstedt, and Martin [31].

SUGGESTED READING

The bulk of the results in this chapter are inspired by the paper by Rahmani,
Ji, Mesbahi, and Egerstedt [200], where both the automorphism group and
equitable partitions were introduced as tools for connecting graph topolo-
gies to controllability. In turn, that work started out from the basic premise
established by Tanner in [229]. Together, these two papers provide a rather
crisp introduction to the subject. But we also recommend that interested
readers examine the related work by Olfati-Saber and Shamma, [184], on
consensus filters, in which a similar line of thought has been pursued. For
general optimal control, we recommend the book by Bryson and Ho [40].

EXERCISES

Exercise 10.1. Consider a connected, undirected network with input nodes
(one or more). Let the floating nodes be running the standard agreement
protocol. Show that if the network is not controllable, then the uncontrol-
lable part of the system is asymptotically stable.

Exercise 10.2. Given a controllable leader-follower network, assume that
a new agent shows up (that is, the graph gains another node). Construct

290 CHAPTER 10

an algorithm for selecting the minimal number of edges that the new node
needs when connecting to the original graph in order to not ruin the control-
lability properties of the new graph.

Exercise 10.3. Consider a network where a single node acts as an input
node and the remaining floating nodes are executing the agreement proto-
col. In Theorem 10.15, controllability is characterized in terms of network
symmetry. Explain how you would have to change this theorem if the net-
work was directed rather than undirected.

Exercise 10.4. Consider again Theorem 10.15. This theorem is directly
applicable to observability when the output node and the input node are in
fact the same node. Explain how you would have to change this result if the
input and output nodes were in fact distinct nodes.

Exercise 10.5. Given an input network and assume that the input nodes’
positions can be controlled directly while the floating nodes’ dynamics sat-
isfy the agreement protocol. With this setup, consider the networks below,
where the input nodes are given in black and the floating nodes in white.
Which (if any) of the networks are controllable?

G1 G2 G3 G4

Exercise 10.6. Consider an undirected network with a single anchor node
(node vn, with n the total number of vertices) connected to every one of
the floating nodes, that is, the number of floating nodes is nf = n − 1 and
deg(vn) = n − 1.

For this system, find simple expressions for the quantities Bf and Af1,
where the graph Laplacian is partitioned as

L =

[
Af Bf

BT
f C

]
.

AGREEMENT WITH INPUTS AND OUTPUTS 291

Exercise 10.7. Consider the graph structure in the figure below, which is
a quotient graph obtained by grouping vertices together into cells. For ex-
ample, the notation {1, 2, 3, 4} means that vertices v1, . . . , v4 are grouped
together into that cell. Determine the weights (they should all be nonzero)
on the different edges so that the quotient graph is obtained from an equi-
table partition of an undirected graph with 23 vertices.

{1, 2, 3, 4}

{5, 6, 7, 8}
{9, 10, 11}

{16}

{13}
{14, 15}

{23} {17, 18}

{19, 20, 21, 22}

{12}

Exercise 10.8. If the network is connected, then the followers will end up
(asymptotically) at

xf = −A−1
f Bfxl,

given the static leader positions xl. Show that each component of xf above
is in fact given by a convex combination of the components of xl.

Exercise 10.9. Consider the linear-quadratic optimal control problem

min
u

∫ ∞

0

(
u(t)T Ru(t) + x(t)T (t)Qx(t)

)
dt,

where the matrices Q and R are, respectively, positive semidefinite and pos-
itive definite, and

ẋ(t) = −Afx(t) − Bfu(t)

corresponds to a controllable network.

292 CHAPTER 10

Now, just because the followers execute a decentralized control strategy it
does not follow that the leaders’ optimal control strategy will be decentral-
ized. Determine if this is the case for this infinite horizon optimal control
problem.

Exercise 10.10. Sometimes it does not matter which follower ends up at
which target position, that is, the follower roles are not assigned. Given
a situation in which controllability (or rather the lack thereof) prevents the
leader to drive xi to τi and xj to τj (where τ denotes the target position),
under what conditions on the pair (A,B), is it possible to drive xi to τj and
xj to τi instead?

Exercise 10.11. The previous exercise hints toward a “permutation-based
controllability property.” In general, how does this notion change the strcu-
ture of the topology-based controllability analysis discussed in this chapter?

Exercise 10.12. Prove Corollary 10.19.

Chapter Eleven

Synthesis of Networks

“There are only two tragedies in life:
one is not getting what one wants,

and the other is getting it.”
— Oscar Wilde

In this chapter, we delve into the problem of network formation (or syn-
thesis), i.e., how networks can be formed in centralized or distributed man-
ners such that the resulting network has certain desirable properties. Our
perspective is shaped by viewing the network synthesis problem as a dy-
namic process by which an initial network is evolved–in lieu of local or
global objectives–to reach an equilibrium configuration in the steady state.
Reasoning about such a process, as it turns out, critically depends on the
information that is available to each node. In the case where the individual
agents cannot directly access the entire network structure, it becomes of
paramount importance to have a notion whereby each agent come to terms
with the particular global or local network structure.

In the first part of this chapter, we examine a candidate notion, where agents
in the network can assess what local structures are desirable to them. Not
surprisingly, the local nature of decisions and information structure for this
part of our discussion assumes a game theoretic flavor. We then turn our
attention to cases where the network structure is driven by a centralized
algorithm that relies on a global information about the entire network struc-
ture.

11.1 NETWORK FORMATION

In this chapter, we consider processes by which agents in a network–aided
by local or global knowledge of the network structure–can make decisions
about how the structure and parameters of the network should evolve. We
will refer to the problem of design and reasoning about this aspect of net-
worked system as the synthesis of networks or network formation problem.

294 CHAPTER 11

The solution strategy for this class of problems–as it turns out–is criti-
cally dependent on the assumptions that one makes about the information
that is available to agents for steering the network toward a satisfying con-
figuration. For example, in the case where the agents can be directed by a
“global” algorithm with full access to the structure of the network at each
instance, the problem generally reduces to an optimization problem with
decision variables involving the existence or absence of particular edges.

A few examples of such problems will be treated in § 11.4. However,
there are two important variations from the case where an agent or the steer-
ing algorithm acts globally and has global information about the network.
These include situations where (a) agents act locally but the information
that is available for their local decisions is global, and (b) agents act locally
and information is also local. Our motivation in this chapter is to introduce
certain facets of both variations. We start with the “know-global-act-local”
perspective, giving the network formation a game theoretic character. We
then proceed by examining two scenarios that are approached via a “know-
global-act-global” framework, which can best be viewed in the realm of
optimization.

11.2 LOCAL FORMATION GAMES

In this section, we consider the situation where agents in the network lo-
cally modify the network structure in order to reach a structure that has
certain desirable network-wide properties. These global properties might
include network connectivity, or, motivated by the agreement problem and
its extensions, the spectrum of the graph Laplacian.

As an example, if it is desired to maximize the connectivity of the result-
ing graph, it is natural that all agents strive to connect to all other agents–
leading to a complete graph. The problem is of course more interesting and
relevant when there are costs associated with the edges in the graph and
agents make strategic choices about edges that should be paid for.

More formally, consider a global utility or cost function for the entire net-
work G, denoted by U(G) and C(G), respectively, representing the desirable
properties of the network and the cost structure for having these properties.
We refer to U(G) and C(G) as the social utility or social cost of the network
G. In order to introduce a local nature to the decision process on the part
of each agent, we also introduce a local utility, or local cost, for each agent
that is a function of the overall network G. Hence, for each agent i, we have
a utility ui(G) or a cost ci(G). Knowing this utility or cost, agent i adopts
a decision si ∈ Si, which in turn collectively leads to the realization of a

SYNTHESIS OF NETWORKS 295

network G(s), where s ∈ S is the vector of strategies

s = [s1, s2, . . . , sn]T ∈ S, with S = S1 × S2 × · · · × Sn.

The strategies that are of particular interest in this section include the sce-
nario where each agent decides on the existence of an undirected edge be-
tween itself and another agent in the network.

A moments reflection on the local nature of the decision making pro-
cess that we would like to capture points to the necessity of defining an
equilibrium notion, where the network formation process reaches a steady
state. In the case of a dynamic system governed by a differential equation
ẋ = f(x), the equilibrium is naturally defined as the set of vectors x∗ such
that f(x∗) = 0; hence, once x assumes the value x∗, the dynamics induced
by the function f does not steer the state away from it.

A similar notion of equilibrium, this time for a network structure, proves
to be a bit more problematic, particularly if it is required to have a local
character. One way to define such an equilibrium, which will be adopted in
this section, is that of a Nash equilibrium, one of the central constructs in
game theory. In order to define this notion in the context of network forma-
tion, let the agents in the network adopt strategies s = (s1, s2, . . . , sn), that
is, each si captures the set of edges that agent i likes to establish, and pay
for, at a given time. Then s is a Nash equilibrium of the network if, for each
agent i, whenever s′i �= si, one has

ui(s−i, s
′
i) ≤ ui(s−i, si) for all i.

In other words, si is the best response of agent i with respect to any unilat-
eral change in its strategy; s−i is the vector s with a missing ith component.
We proceed to examine some of the particular aspects and ramifications of
using the Nash equilibrium as a solution concept for the network formation.

11.2.1 The Local Connection Game, Nash Equilibria, and the Price of Anar-
chy

Equipped with a notion of an equilibrium for network formation processes,
at least two important questions need to be addressed: (1) how such an
equilibrium can be reached, and (2) how the social cost or utility obtained
from this equilibrium relates to the utility that would have been obtained if
agents could implement a global algorithm. We refer to the ratio between
the cost obtained at a Nash equilibrium and the social optimal cost as the

296 CHAPTER 11

price of anarchy. Thus, the closer the price of anarchy is to 1, the more
desirable is the corresponding Nash equilibrium.1 Although these questions
turn out to be rather problematic for a general problem setup, we proceed to
address the second aspect via a concrete example. In this venue, consider
the scenario where n agents, initialized within an empty interconnection
network, have a local cost function of the form

αd(i) +
∑
j �=i

dist(i, j), (11.1)

where d(i) is the degree of vertex i. The interpretation here is that agent
i attempts to minimize the sum of its distance to other agents in the net-
work while being considerate of how much each edge, or link, costs. Since
dist(i, j) = ∞ when there is no path from node i and j, the local cost struc-
ture (11.1) guarantees that, at the Nash equilibrium, the overall network will
be connected.2

We now let the social cost of the network be

C(G) =
∑
i�=j

dist(i, j) + α card(E), (11.2)

reflecting the desire to minimize the geodesic distances across the network
while being frugal on how many edges are required to achieve this objective.
We call the network that minimizes (11.2), an efficient or socially optimal
network. We proceed to examine the price of anarchy for this so-called local
connection game.

Proposition 11.1. If α ≥ 2 then any star graph is socially optimal. How-
ever, if α < 2, the complete graph is socially optimal.

Proof. Suppose that the socially optimal network has m edges–hence at
least 2m pairs of vertices are directly connected, contributing αm to the
social cost. The rest of the pairs, specifically, n(n − 1) − 2m of them,
contribute at least 2(n(n− 1)− 2m) to the social cost since their respective
distances will be at least 2. Hence, the lower bound for the social cost is
αm + 2m + 2n(n − 1) − 4m = (α − 2)m + 2n(n − 1). When α ≥ 2,
the social cost is minimized when the graph is a tree, and in particular a star.
When α < 2, the complete graph is socially optimal.

1The lowest ratio is sometimes referred to as the price of stability.
2In this setting, when agent i establishes and pays for edge {i, j}, this edge is also avail

able for agent j.

SYNTHESIS OF NETWORKS 297

Proposition 11.2. If α ≥ 1 then any star graph is a Nash equilibrium.
However, if α ≤ 1 then the complete graph is a Nash equilibrium.

Proof. Let α ≥ 1 and consider the star graph with the center node connected
to all the other nodes. If the center node disconnects one of the edges, then
it incurs an infinite cost–thus it does not have an incentive to unilaterally
change its n − 1 connections with other nodes. The leaf nodes,3 on the
other hand, can deviate by adding edges as they cannot overrule the center
node’s decision and disconnect with the center by deleting an edge. Adding
k edges has a savings of k in distances at a price of αk; since α ≥ 1, this is
not a locally profitable move and thus the star is a Nash equilibrium.

Now, let α ≤ 1, and consider a complete graph. An agent that stops
paying for a set of k edges saves αk in edge price, while increasing its total
distances by k; thus the complete graph is a Nash equilibrium in this case.

Using the above two results, it follows that for α ≥ 2 or α ≤ 1, the price
of anarchy is 1. Below, we show that for 1 < α < 2, the price of anarchy is
at most 4/3.

First, note that since every pair of vertices that is not connected by an
edge is at least a distance 2 apart, one has the lower bound for the social
cost, as

C(G) ≥ αm + 2m + 2(n(n − 1) − 2m) = 2n(n − 1) + m(α − 2), (11.3)

where m = card(E). It thus follows from (11.3) that when 1 < α < 2,
the social optimum is achieved when card(E) is maximum, that is, with the
complete graph.

Theorem 11.3. For 1 < α < 2, the price of anarchy is at most 4/3.

Proof. Let m = card(E). The price of anarchy is bounded by

C(star)
C(complete)

=
(n − 1)(α − 2 + 2n)

n(n − 1)((α − 2)/2 + 2)

=
4

2 + α
− 4 − 2α

n(2 + α)
<

4
2 + α

<
4
3
.

3That is, the other nodes.

298 CHAPTER 11

We now proceed to show that, more generally, the price of anarchy, de-
fined by the local cost (11.1) and social cost (11.2), is characterized by the
edge cost α. As this is accomplished by monitoring the diameter of the net-
work that corresponds to the Nash equilibrium, we first state the following
result.

Proposition 11.4. If the diameter of a Nash equilibrium in the local con-
nection game is d, then its social cost is at most O(d) times the minimum
possible cost.

Proof. In order to achieve the minimum cost, we note that, since at the
social optimum the graph has to be connected, we need to have at least n−1
edges, costing α(n − 1). In the meantime, there are n(n − 1)/2 distances,
each of which is at least 1. Thus the cost of the optimal solution is at least
Ω(αn + n2). On the other hand, at the Nash equilibrium, the distance cost
is at most n2d so it is at most d times the minimum.

In order to bound the edge costs, consider two classes of edges: (1) the
cut edges, which are at most n − 1, with their associated cost of at most
α(n− 1), and (2) the non-cut edges.4 We now proceed to show that the cost
of non-cut edges at the Nash equilibrium is at most O(n2d).

In order to show this, consider node v and pick an edge e = (u, v), which
has been paid for by node u. Define the set Ve as the set of nodes w such
that the shortest path from u to w passes through e. We now evaluate the
cost and benefit of having edge e: absence of edge e would save a cost of α;
however, the distance to and from each node in Ve would have increased by
at most 2d. Thus, having edge e brings a total distance savings of at most
2d card(Ve). Since edge e is present at the Nash equilibrium, it must be that

α ≤ 2d card(Ve),

and therefore cardVe ≥ α/2d. Thus, there is a natural correspondence
between the number of non-cut edges e present at the Nash equilibrium
and the set Ve constructed above. Therefore, there are O(n/(α/2d)) =
O(dn/α) such edges, with the total cost of O(dn) for each node v. Hence,
the total cost at the Nash equilibrium is O(n2d).

Proposition 11.5. The diameter of a Nash equilibrium in the local connec-
tion game is at most 2

√
α; hence the price of anarchy is at most O(

√
α).

Proof. Suppose that dist(u, v) ≥ 2k for some k. Then u could pay for an
edge in order to improve the sum of its distances to the nodes in the second

4Cut edges are those that, when removed from the graph, cause a node to become isolated.

SYNTHESIS OF NETWORKS 299

half of the shortest path between u and v by

(2k − 1) + (2k − 3) + · · · + 1 = k2.

Thereby, if dist(u, v) ≥ 2
√

α, node u would benefit from adding the edge
uv at the price of α, which leads to a contradiction.

11.3 POTENTIAL GAMES AND BEST RESPONSE DYNAMICS

We now turn our attention to the algorithmic facet of the notion of Nash
equilibrium for a network formation process. This is particularly impor-
tant as it is not clear how each agent can end up in a Nash equilibrium by
following a particular, local algorithm.

In this section, we consider a subclass of games where much more can
be said about the algorithmic aspects of the game. We refer to this class of
games as potential games. For any finite game, an exact potential function
Φ is a function that maps every strategy S to some real value and satisfies
the following condition. If S = (s1, s2, . . . , sn) and s′i �= si is an alternative
strategy for some agent i, and S′ = (s−i, s

′
i), then

Φ(S) − Φ(S′) = ui(S′) − ui(S).

In other words, the amount that an agent can benefit by a unilateral change
in its strategy should exactly be reflected by how much the potential function
will be reduced. Although, in general, a Nash equilibrium does not have to
exist, as shown below, the structure of a potential game always guarantees
one.

Theorem 11.6. Every potential game has at least one Nash equilibrium,
namely, the strategy S that minimizes Φ(S).5

Proof. Let Φ be the potential function for the game and let S be a strategy
vector minimizing Φ(S). Consider any move by agent i that results in a
new strategy vector S′. By assumption, Φ(S′) ≥ Φ(S), and by definition
ui(S′)−ui(S) = Φ(S)−Φ(S′). Thus, i’s utility cannot increase from this
move, and hence S is a Nash equilibrium.

5Such an equilibrium is referred to as a pure Nash equilibrium as opposed to a mixed
Nash equilibrium, employed when probabilistic strategies are considered.

300 CHAPTER 11

One of the immediate ramification of the above observation is an “algo-
rithm” for reaching Nash equilibrium, namely, the best response dynamics–
also known as the “greedy algorithm.” In such a setting, each agent chooses
its (local) strategy in order to minimize the potential for the game.

Theorem 11.7. In any finite potential game, the best response dynamics
always converges to the Nash equilibrium.

We are now ready to state a general result on the price of anarchy for a
potential game.

Theorem 11.8. Suppose that we have a potential game with potential func-
tion Φ, and assume that for any outcome S, we have

C(S)
γ

≤ Φ(S) ≤ ρC(S) (11.4)

for some constants γ, ρ > 0. Then the price of anarchy is at most γρ.

Proof. Let S̄ be the strategy vector that minimizes Φ(S) (it is a Nash equi-
librium) and let S∗ be the cost that minimizes the social cost C(S). By
(11.4),

C(S̄)
γ

≤ Φ(S̄) ≤ Φ(S∗) ≤ ρC(S∗),

and thus C(S̄) ≤ γρC(S∗). Thereby, the price of anarchy is bounded by
γρ.

As an example, consider the case when the local utility for each agent is
denoted by

ui = −αd(i) + λ2(G), (11.5)

for some α > 0, and

Φ(S) = α card(E) − λ2(G). (11.6)

Thus, each agent attempts to maximize the value of λ2(G) by including
edges in the network while being considerate of the total cost for these edge
choices.

We show that Φ (11.6) is in fact a potential function for this game. In this
venue, note that

Φ(S) − Φ(S′) = α(card(E) − card(E′)) − λ2(G) + λ2(G ′)

SYNTHESIS OF NETWORKS 301

and

ui(S′) − ui(S) =−αd(i)′ + λ2(G ′) − (−αd(i) + λ2(G))
=α(d(i) − d(i)′) + λ2(G ′) − λ2(G),

where graphs G and G′ are, respectively, associated with strategies S and
S′, and d(i) and d(i)′ are the degree of vertex i in graphs G and G′. As a
direct consequence of Theorems 11.6 and 11.7, it follows that when each
agent is supplied with a local utility function of the form (11.5), then the
best response dynamics leads the network, in a decentralized way, to a Nash
equilibrium. Moreover, when the social cost satisfies the inequality (11.4),
the best response dynamics is guaranteed to lead to a configuration, whose
cost is within a constant multiple of the social optimum.

11.3.1 Growing Nash Networks

Motivated by reaching a Nash equilibrium by following the best response
dynamics, we consider the problem faced by each agent in its quest for
increasing λ2(G) by adding an edge to the existing network.

Assume that, at a given time instance, the network is represented by G
and an agent is faced with choosing an edge among a set of candidate edges
e1, . . . , ep that increases λ2(G) the most. Note that the resulting graph
Laplacian, after adding any number of edges from the candidate set, as-
sumes the form

L(G, x) = L(G) +
∑

i

xibib
T
i , (11.7)

where each xi is either zero or one and bi represents the column in the
incidence matrix that corresponds to edge ei.

Let us for a moment pretend that the xi in (11.7) can assume real values
on the unit interval, allowing us to consider the directional derivative of
λ2(G, x) along each direction xi. In this venue, the directional derivative of
λ2(G, x), assuming that it is an isolated eigenvalue of L(G, x), is

∂λ2(G, x)
∂xi

= bT
i qqT bT

i = (qu − qv)2, (11.8)

where ei = uv and q is the normalized eigenvector of L(G) that corresponds
to its second smallest eigenvalue. In other words, when λ2(G) is an isolated
eigenvalue of L(G), the difference (qu − qv)2 gives the first order approxi-
mation of the increase to λ2(G) if edge uv is added to the graph.

We now provide lower and upper bounds on the second smallest eigen-
value of the augmented graph in terms of the spectrum of L(G) and the

302 CHAPTER 11

eigenvector corresponding to λ2(G). These bounds can then be used to im-
prove the current network G by adding an edge, among a candidate set of
edges, that results in the largest increase in λ2(G). We note that although
these estimates can be used for the local decision process faced by each
node to improve λ2(G), they do require global knowledge of the network
structure and its spectra. We first need a useful lemma.

Lemma 11.9. Let G be a graph whose Laplacian has distinct eigenvalues
(and hence is connected) with spectral factorization QΛ(G)QT . Assume
that a new edge e = uv is added to G such that for every normalized eigen-
vector q associated with nonzero eigenvalues of L(G), qu − qv is nonzero.
Then the nonzero Laplacian eigenvalues of G + e, ζ2, . . . , ζn, are distinct
and satisfy the so-called secular equation

f(ζ) = 1 +
n∑

i=2

z2
i

λi(G) − ζ
= 0,

where z = QT b and b is the incidence vector for e. Moreover, the eigenval-
ues of L(G) + bbT satisfy the interlacing inequalities

λ2(G) < ζ2 < λ3(G) < ζ3 < · · · < λn(G) < ζn.

Proof. Let L(G) = QΛ(G)QT , where Q consists of an orthogonal set of
eigenvectors of L(G). Let b be the incidence vector for edge e = uv. Then
the Laplacian of G + e is L(G) + bbT and

Q(L(G) + bbT)QT = Λ(G) + z̄z̄T ,

where z̄ = QT b. We note that z̄1 = 0 and z̄i �= 0 for i = 2, . . . , n (by
the statement of the Lemma). The nonzero eigenvalues of L(G) + bbT ,
therefore, are the eigenvalues of Λ(G) + zzT , where

Λ(G) =
[

0 0
0 Λ(G)

]
and z̄ =

[
0
z

]
.

Now, let ζ be a nonzero eigenvalue of L(G) + bbT with the corresponding
eigenvector v,

(Λ(G) + zzT)v = ζv,

and thereby

(Λ(G) − ζI)v + (zT v)z = 0. (11.9)

Our next observation toward the final proof of the lemma hinges on showing
that the matrix Λ(G)− ζI in (11.9) is invertible and that z is not orthogonal

SYNTHESIS OF NETWORKS 303

to any eigenvector of Λ(G) + zzT . This is shown as follows. If a nonzero
eigenvalue ζ for Λ(G) + zzT is equal to one of the nonzero eigenvalues of
G, say λi(G), then from (11.9) it follows that

1Ti ((Λ(G) − ζI)v + (zT v)z) = (zT v)zi = 0,

where 1i is the vector with a 1 at the ith entry and zeros at all other entries.
Since zi �= 0, zT v = 0 and Λ(G)v = ζv. However, since λi(G) (i =
2, 3, . . . , n), are distinct, it follows that the vector v is a multiple of 1i and
hence 0 = zT v = zi, which is a contradiction.

Returning to the main theme of the proof, we now apply zT (Λ(G)−ζI)−1

to both sides of (11.9), leading to

(zT v)(1 + zT (Λ(G) − ζI)−1z) = 0,

and since zT v �= 0, it follows that the nonzero eigenvalues of L(G) + bbT

satisfy the equation

f(ζ) = 1 + zT (Λ(G) − ζI)−1z = 0. (11.10)

We note that f(ζ) (11.10) is monotonic between its two poles. Hence it has
n − 2 roots, ζ2, ζ3, . . . , ζn−1, on the intervals

(λi(G), λi+1(G)) for i = 2, 3, . . . , n − 1,

and ζn > λn(G).

Proposition 11.10. Let b be the incidence vector for the edge e = uv in
the graph G with distinct Laplacian eigenvalues such that for every eigen-
vector q associated with nonzero eigenvalues of L(G), qu − qv is nonzero.
Moreover, let q be the normalized eigenvector corresponding to λ2(G) and
ρi = λi(G) − λ2(G), for i = 3, . . . , n. Then

λ2(G + e) ≥ λ2(G) +
(qu − qv)2

(3/2) + (6/ρ3)

and

λ2(G + e) ≤ λ2(G) +
(qu − qv)2

1 + (2 − (qu − qv)2)/ρn
.

Proof. To prove the lower bound, consider QΛQT as the orthogonal de-
composition of L(G); we have assumed that the entries in Λ are distinct.
Note that matrices L(G) and L(G) + bbT both have zero eigenvalues with
the corresponding eigenvector 1. As shown in Lemma 11.9, the remaining

304 CHAPTER 11

n− 1 eigenvalues of L(G) + bbT are the n− 1 roots of the so-called secular
equation

g(ζ) = 1, (11.11)

where

g(ζ) =
n∑

i=2

z2
i

ζ − λi(G)

and z = QT b; we note that z2 = qu − qv and z1 = 0. Denote by ζ2, . . . , ζn

the nonzero ordered eigenvalues of L(G)+bbT . By the interlacing property,
these eigenvalues satisfy

λi(G) < ζi < λi+1(G), i = 2, . . . , n − 1.

Since g(ζ) is a locally decreasing function of ζ ∈ (λ2, λ3), in this interval

ζ ≤ ζ2 if and only if g(ζ) ≥ g(ζ2).

Since g(ζ2) = 1, if then follows that ζ ≤ ζ2 if

z2
2

ζ − λ2(G)
≥ 1 +

n∑
i=3

z2
i

λi(G) − ζ
.

Since ‖z‖ = 2 and
∑n

i=3 z2
i ≤ 2, it follows that

2
λ3(G) − ζ

≥
n∑

i=3

z2
i

λi(G) − ζ
.

Hence, in order to show that ζ ≥ ζ2, it suffices to show that

z2
2

ζ − λ2(G)
≥ 1 +

2
λ3(G) − ζ

.

Let ζ − λ2(G) = ε and λ3(G) − λ2(G) = δ. We note that if

ε =
z2
2

2(1/δ + 1/4 +
√

1/4 + 4/δ2)
, (11.12)

then

z2
2

ε
≥ 1 +

2
δ − ε

.

SYNTHESIS OF NETWORKS 305

In other words, when ε is defined by (11.12), we have ζ2 ≥ λ2(G) + ε.
However, √

1
4

+
4
δ2

≤ 1
2

+
2
δ
,

and it follows that

ζ2 ≥ λ2(G) +
z2
2

(3/2) + (6/δ)
.

But z2
2 = (qu−qv)2, and the lower bound in the statement of the proposition

follows.
For the upper bound, note that λ2(G+e) is the number ζ2 ∈ (λ2(G), λ3(G))

satisfying

ζ2 = λ2(G) +
z2
2

1 +
∑n

i=3 z2
i /(λi(G) − ζ2)

.

As λ2(G) < ζ2 and ‖z‖ = 2, it follows that

ζ2 ≤λ2(G) +
z2
2

1 +
∑n

i=3 z2
i /(λi(G) − λ2(G))

≤λ2(G) +
z2
2

1 + (2 − z2
2)/ρn

.

11.4 NETWORK SYNTHESIS: A GLOBAL PERSPECTIVE

In this section, we consider the set of n mobile elements as vertices of a
graph, with the edge set determined by the relative positions of the respec-
tive elements. Specifically, parallel to our setup in Chapter 7, we let G
denote the set of graphs of order n with vertex set V = [n] and edge set
E = {ij | i = 1, 2, . . . , n − 1, j = 2, . . . , n, i < j}, with the weighting
function

w : R3 × R3 → R+,

assigning to each edge ij a function of the Euclidean distance between the
two mobile nodes i and j. Thus we have

wij = w(xi, xj) = f(‖xi − xj‖) (11.13)

306 CHAPTER 11

for some f : R+ → R+, with xi ∈ R3 denoting the position of element i.
In our setup the function f in (11.13) will be required to exhibit a distinct
behavior as it traverses the positive real line. For example, we will require
that this function assume a constant value of 1 when the distance between
i and j is less than some threshold and then rapidly drop to zero (or some
small value) as the distance between these elements increases. Such a re-
quirement parallels the behavior of an information link in a wireless network
where the signal power at the receiver side is inversely proportional to some
power of the distance between transmitting and receiving elements. Using
this framework, we now consider the formation configuration problem

Λ : max
x

λ2(G, x), (11.14)

where x = [x1, x2, . . . , xn]T ∈ R3n is the vector of positions for the dis-
tributed system, the matrix L(G, x) is a weighted graph Laplacian defined
elementwise as

[L(G, x)]ij =
{

−wij if i �= j,∑
s �=i wis if i = j,

(11.15)

and λ2(G, x) denotes the second smallest eigenvalue of the “state-dependent”
Laplacian matrix L(G, x). Furthermore, we restrict the feasible set of (11.14)
by imposing the proximity constraint

dij = ‖xi − xj‖2 ≥ ρ1 for all i �= j, (11.16)

preventing the elements from getting arbitrarily close to each other in their
desire to maximize λ2(G, x) in (11.14).

11.4.1 Network Formation Using Semidefinite Programming

The general formulation of the problem Λ (11.14) does not readily hint at
being tractable in the sense of admitting an efficient algorithm for its solu-
tion. Generally, maximizing the second smallest eigenvalue of a symmetric
matrix, subject to matrix inequalities, does not yield to a desirable convex
optimization approach and, subsequently, a solution procedure that relies
solely on interior point methods (see Appendix A.5). The above compli-
cation, however, is somewhat alleviated in the case of graph Laplacians,
where the smallest eigenvalue λ1(L(G)) is always zero with the associated
eigenvector of 1 composed of unit entries.

Nevertheless, due to the nonlinear dependency of entries of L(G) on the
relative distance dij and the presence of constraints (11.16), the problem Λ
(11.14) assumes the form of a nonconvex optimization. In light of this fact,
we will proceed to propose an iterative semidefinite programming based

SYNTHESIS OF NETWORKS 307

approach for this problem.6 However, before we proceed, we make a few
remarks on some judicious choices for the function f in (11.13).

The choice of f in (11.13) is guided not only by particular applications
but also by numerical considerations. Although there are a host of choices
for f , for our analysis and numerical experimentation, we let f assume the
form

f(dij) = ε(ρ1−dij)/(ρ1−ρ2), ε > 0, (11.17)

given that dij ≥ ρ1. Note that f(ρ1) = 1 and f(ρ2) = ε.
Among the advantages of working with functions of the form (11.17) are

their differentiability properties, as well as their ability to capture situations
that are of practical relevance. In many such situations, the strength of an
information link is inversely proportional to the relative distance and decays
exponentially after a given threshold is passed. Furthermore, and possibly
more importantly, function (11.17) leads to a stable algorithm for our nu-
merical experimentation, as will be seen shortly.

11.4.2 Maximizing λ2(G, x)

We first present a linear algebraic result in conjunction with the general
problem of maximizing the second smallest eigenvalue of graph Lapla-
cians.7

Proposition 11.11. Consider the m-dimensional subspace P ⊆ Rn that
is spanned by the vectors pi ∈ Rn, i = 1, . . . ,m. Let P = [p1, . . . , pm] ∈
Rn×m. Then, for aM ∈ Sn, one has

xT Mx > 0 for all nonzero x ∈ P

if and only if

P T MP > 0. (11.18)

Proof. An arbitrary nonzero element x ∈ P can be written as

x = α1p1 + α2p2 + · · · + αmpm

for some α1, . . . , αm ∈ R, not all zeros, and thus x = Py, where y =
[α1, α2, . . . , αm]T . Consequently the first inequality in (11.18) is equivalent

6A semidefinite program (SDP) is a convex optimization problem that aims to minimize
a linear function of a symmetric matrix over a set defined by linear matrix inequalities.

7Recall that M > 0 for a symmetric matrix refers to its positive definiteness.

308 CHAPTER 11

to

(Py)T M(Py) = yT P T MPy > 0

for all nonzero y ∈ Rm, which when phrased differently, translates to the
matrix inequality PT MP > 0.

Corollary 11.12. For a graph Laplacian L(G) the constraint

λ2(G) > 0, (11.19)

is equivalent to

P T L(G)P > 0, (11.20)

where P = [p1, p2, . . . , pn−1], and the unit vectors pi ∈ Rn are chosen
such that

pT
i 1 = 0 (i = 1, 2, . . . , n − 1)

and

pT
i pj = 0 (i �= j).

Proof. We know that L(G) ≥ 0, L(G)1 = 0, and for a connected graph
rank L(G) ≤ n − 1. This implies that

xT L(G)x > 0 for all nonzero x ∈ 1⊥, (11.21)

where

1⊥ = {x ∈ Rn |1T x = 0}. (11.22)

In view of Proposition 11.11, condition (11.21) is equivalent to having

P T L(G)P > 0,

with P denoting the matrix of vectors spanning the subspace 1⊥. Without
loss of generality, this subspace can be identified with the basis unit vectors
satisfying (11.21).

Corollary 11.13. The problem Λ (11.14) is equivalent to

Λ : max
x

γ (11.23)

s.t. dij = ‖xi − xj‖2 ≥ ρ1, (11.24)
P T L(G, x)P ≥ γ In−1, (11.25)

where i = 1, 2, . . . , n− 1, j = 2, . . . , n, i < j, and the pairwise orthogonal
unit vectors pi forming the columns of P span the subspace 1⊥ (11.22).

SYNTHESIS OF NETWORKS 309

Proof. The proof follows from Corollary 11.12.

One of the consequences of Corollary 11.13 pertains to the following
graph synthesis problem: determine graphs satisfying an upper bound on
the number of their edges, with maximum smallest second Laplacian eigen-
value. Although this problem will not be considered further, we point out
that it can be reformulated as

max
G∈G

{γ | Trace L(G) ≤ ρ, PT L(G)P ≥ γ In−1},

where P is defined as in Corollary 11.13 and ρ is twice the maximum num-
ber of edges allowed in the desired graph.

11.5 DISCRETE AND GREEDY

We now proceed to view the problem Λ (11.14) in an iterative setting, where
the goal is shifted toward finding an algorithm that attempts to maximize the
second smallest eigenvalue of the graph Laplacian at each step. Toward this
aim, we first differentiate both sides of (11.24) with respect to time as

2 {ẋi(t) − ẋj(t)}T {xi(t) − xj(t)} = ḋij(t), (11.26)

and then employ Euler’s first discretization method, with ∆t as the sampling
time,

x(t) → x(k), x(k + 1) − x(k) ≈ ẋ(t)∆t,

to rewrite the first part of (11.24) as

2
(
xi(k + 1) − xj(k + 1)}T {xi(k) − xj(k)

)
= dij(k + 1) + dij(k).

Similarly, the state-dependent Laplacian L(G, x) in (11.25) is discretized by
first differentiating the terms wij with respect to time, and then having

wij(k + 1) = wij(k) − ε(ρ1−dij(k))/(ρ1−ρ2)
(
dij(k + 1) − dij(k)

)
,

recalling that we are employing functions of the form (11.17) in (11.13).
The discrete version of the state-dependent Laplacian, L(G, xk) = L(Gk),
assumes the form

[L(Gk)]ij =
{

−wij(k) if i �= j,∑
s �=i wis(k) if i = j.

310 CHAPTER 11

Putting it all together, we arrive at the iterative step for solving the opti-
mization problem, in fact an SDP,

Λk : max
x(k+1)

γ (11.27)

subject to the constraints

2
(
xi(k + 1) − xj(k + 1)

)T (
xi(k) − xj(k)

)
= dij(k + 1) + dij(k), (11.28)

dij(k + 1) ≥ ρ1, (11.29)
P T L(G(k + 1))P ≥ γ In−1 (11.30)

for i = 1, 2, . . . , n − 1, j = 2, . . . , n, i < j, and

x(k) = [x1(k), x2(k), . . . , xn(k)]T ∈ R3n.

The algorithm is initiated at time k = 0 with an initial graph G(0) = G0,
and then for k = 0, 1, 2, . . . , we proceed to iteratively find a graph that
maximizes λ2(Gk+1) by moving the mobile robots. This greedy procedure
is then iterated upon until the value of λ2(Gk) cannot be improved further.
We note that the proposed greedy algorithm converges, as the sequence gen-
erated by it is nondecreasing and bounded from above.8

11.5.1 Euclidean Distance Matrices

In previous section, we proposed an algorithm that converges to an equi-
librium configuration, in search of maximizing the quantity λ2(L(G)) for
a state-dependent graph. However, by replacing the nonconvex constraint
(11.24) with its linear approximation (11.28) - (11.29), one introduces a po-
tential inconsistency between the position and the distance vectors. In this
section, we provide two remedies to avoid such potential complications. Let
us first recall the notion of a Euclidean distance matrix (EDM).

Given the position vectors x1, x2, . . . , xn ∈ R3, the EDM E = [dij] ∈
Rn×n is defined entrywise as [E]ij = dij = ‖xi−xj‖2 for i, j = 1, 2, . . . , n.

The EDMs are nicely characterized in terms of linear matrix inequalities.
Theorem 11.14. A matrix E = [dij] ∈ Rn×n is an EDM if and only if

JEJ ≤ 0, (11.31)
dii = 0 for i = 1, 2, . . . , n, (11.32)

where J = I − 11T /n.

8The bound follows from the fact that the second smallest eigenvalue of L(G) for a graph
of order n is bounded from above by n.

SYNTHESIS OF NETWORKS 311

Theorem 11.14 allows us to guarantee that by adding the two convex con-
straints (11.31) - (11.32) to problem Λk (11.27) - (11.30), we always obtain
consistency among the position and distance variables at each iteration step.
Moreover, by updating the values of the dij(k) and [L(k)]ij in (11.28) and
(11.30), after calculating the values of x(k), we can further reduce the effect
of linearization in the proposed procedure.

To further expand on this last point, suppose that x1(k), x2(k), . . . , xn(k),
dij(k), and [L(k)]ij , i = 1, 2, . . . , n − 1, j = 2, . . . , n, i < j, have
been obtained after solving the problem Λk (11.27) - (11.30). Our proposed
modification to the original algorithm thus amounts to updating the values
of dij(k) and [L(k)]ij , based on the computed values of x1(k), x2(k), . . .,
xn(k), before initiating the next iteration.

11.5.2 An Example

In order to examine how the proposed semidefinite programs dictate the evo-
lution of state-dependent graphs we consider a few representative scenarios.

Figure 11.1 depicts the behavior of six mobile elements under the guid-
ance of the proposed algorithm, leading to a planar configuration that locally
maximizes λ2(L(G)). The constants ε, ρ1, and ρ2 in (11.17) are chosen to
be 0.1, 1, and 1.5, respectively. The algorithm was initialized with a con-
figuration that corresponds to a path graph. In this case, the sequence of
configurations converges to the truss-shaped graph with the λ2(L(G)) value
of 1.6974. For this set of parameters, the truss-shaped graph suggested by
the algorithm is the global maximum over the set of graphs on six vertices
that can be configured in the plane.9

Using the same simulation scenario, but this time, in search of an optimal
positional configuration in R3, the algorithm leads to the trajectories shown
in Figure 11.2. In this case, the graph sequence converges to an octahedron-
shape configuration with λ2(G) = 4.02.

Increasing the number of nodes to eight, the algorithm was initialized as
the unit cube; the resulting trajectories are shown in Fig 11.3. In this figure,
the edges between vertices i and j indicate that dij ≤ ρ2 = 1.5. The solid
lines in Figure 11.3 represent the final configuration with λ2(G) = 2.7658.
Once again, an exhaustive search procedure indicates that the proposed al-
gorithm does lead to the corresponding global optimal configuration.

9A global maximum may be found in the following exhaustive procedure. First, define
a space large enough to contain the optimal configuration. Then grid this region and search
over the set of all n grid points for the configuration that leads to the maximum value for
λ2(G).

SYNTHESIS OF NETWORKS 313

0
1

2
3

4
5

−1

−0.5

0

0.5

1
−1.5

−1

−0.5

0

0.5

1

x
y

z

10

20

30
40

50

60

1f

2f

3f
4f

5f

6f

Figure 11.2: The trajectory generated by the proposed algorithm for
six nodes in R3: the configuration evolves from a path graph (circles,
10, . . . , 60) to an octahedron (squares, 1f , . . . , 6f).

subject to

trace W = 1, (11.34)
W is diagonal. (11.35)

Now, Proposition 11.11 states that if we know the m vectors spanning the
null space of the n × n symmetric matrix M , then we can create an (n −
m) × (n − m) matrix having the same eigenvalues as M , excluding the m
zero eigenvalues associated with the underlying null space. As we know that
the vector 1 belongs to the null space of the weighted graph Laplacian for
any G, we can directly access the second smallest eigenvalue of the Lapla-
cian through Proposition 11.11. Thus, the problem (11.33) - (11.35) can be
restated as,

γ∗ = max
γ,W

γ, (11.36)

SYNTHESIS OF NETWORKS 315

Moreover, we can let

P =

⎡⎢⎢⎢⎢⎣
−0.2560 −0.2422 0.7071 −0.4193
0.8115 0.3175 0.0000 −0.2018
−0.2560 −0.2422 −0.7071 −0.4193
−0.4375 0.7031 −0.0000 0.3380
0.1380 −0.5362 0.0000 0.7024

⎤⎥⎥⎥⎥⎦
as the matrix P specified in Proposition 11.11 whose columns span the sub-
space orthogonal to span {1}. The optimization problem (11.36) - (11.38)
now yields

γ∗ = 0.1471,

and

w∗
1 = 0.1765, w∗

2 = 0.1765, w∗
3 = 0.3824, w∗

4 = 0.2647.

Figure 11.4: Choosing the weights to maximize the second smallest eigen-
value of the weighted Laplacian

SUMMARY

In this chapter, we delved into various aspects of the network formation
or synthesis problem using optimization and game theoretic models. The
optimization models the we encountered employed matrix variables and
where often represented as semidefinite programs. We also used game theo-
retic and linear algebraic approaches for characterizing means by which the
nodes in the network can update their degrees in order to improve the alge-
braic connectivity of the network. We also examined the notion of price of
anarchy and potential games in the context of network formation problems.

316 CHAPTER 11

NOTES AND REFERENCES

The area of network synthesis has attracted the attention of a number of
disciplines, including economics, computer science, and engineering. In
economics, for example, it is of interest to characterize how various interde-
pendencies among different entities lead to particular economic indicators.
In computer science, on the other hand, network design is often posed and
studied in the context of distributed computation and routing over networks–
a related construct is that of expander graphs. In various branches of engi-
neering, particularly in the wireless community, these type of problems are
referred to as topology design, where the performance of the overall system,
that is, battery life and throughput, has a direct relation to the underlying
wireless network.

Our point of view is more tinted by the applications in networked dy-
namic systems where a group of dynamic agents interact over a network
and it is desirable to quantify the performance of the system as a function of
the network geometry. Our discussion of network formation games closely
follows Fabrikant, Luthra, Maneva, Papadimitriou, and Shenker [80] and the
excellent review by Tardos and Wexler [232], where other network games
as well as relation to the facility location problems are discussed.

We note that Proposition 11.5 can be generalized as follows. The price
of anarchy is O(1) whenever α is O(

√
n). More generally, the price of an-

archy is O(1 + α/
√

n); see [232]. One common criticism of the notion of
Nash equilibrium in the context of social networks is that an explicit account
for existence or absence of an edge can potentially depend on the decision
of a pair of nodes. Although this qualification can be introduced via “coali-
tions,” a more specific notion of equilibrium can be used, namely pairwise
stability [122]. In particular, a network G is pairwise stable if (a) for all
ij ∈ G, ui(G) ≥ ui(G\ij) and (b) for all ij �∈ G if ui(G + ij) > ui(G)
then uj(G + ij) < uj(G). Thus a network is pairwise stable if no agent
wants to sever a link and no two agents want to add a link. Note that while
pairwise stability is a one-link-at-a-time concept, the agent might benefit
from severing multiple links at the same time. Using this concept, analo-
gous constructs that parallel the local connection game can be examined.
More generally, a theory based on ordinal potential functions, resembling
the notion of potential games, can be used to develop algorithms that can
lead a group of agents to pairwise stable configurations. Finally, we note
that the characterization of EDMs in terms of linear matrix inequalities is
shown by Gower [104].

Section 11.3.1 parallels the work of Ghosh and Boyd [97] who proposed
algorithms for adding edges, one at a time, to a graph to maximize the sec-
ond smallest eigenvalue of its graph Laplacian. Section 11.4 is based on the

SYNTHESIS OF NETWORKS 317

work of Kim and Mesbahi [134]. This work, which is motivated by syn-
thesis of “state-dependent graphs,” in turn is related to some other works
including those by Fallat and Kirkland [84] where a graph theoretical ap-
proach has been proposed to extremize λ2(L(G)) over the set of trees of
fixed diameter. Also related to [134] are those by Chung and Oden [49]
pertaining to bounding the gap between the first two eigenvalues of graph
Laplacians, and Berman and Zhang [21] and Guattery and Miller [108],
where, respectively, isoperimetric numbers of weighted graphs and graph
embeddings are employed for lower bounding the second smallest Lapla-
cian eigenvalue. The version of this problem where the weights of a given
graph are adjusted to lead to fastest convergence was considered by Xiao
and Boyd [252]. We note that maximizing the second smallest eigenvalue
of state-dependent graph Laplacians over arbitrary graph constraints is a
difficult computational problem [177].

Example 11.15 was solved using the CVX package developed by Grant
and Boyd [106].

SUGGESTED READING

For much more on the network formation problems as they arise in eco-
nomics, we suggest Jackson [122] and Goyal [105]. The edited volume [176]
has a number of articles devoted to various aspects of network formation
with particular emphasis on their algorithmic implications.

EXERCISES

Exercise 11.1. Give an example of a graph G where adding an edge does
not improve λ2(G) and one where it does.

Exercise 11.2. Show that if λ2(G) has an algebraic multiplicity m in the
graph G, then adding up to m edges will not improve it.

Exercise 11.3. Show that a graph on n vertices is connected if it contains
more than (n − 1)(n − 2)/2 edges.

Exercise 11.4. Show that if the graph G has two connected components,
then the greedy algorithm suggested by (11.8) for adding edges, will result
in the addition of an edge that connects these two components.

Exercise 11.5. An ε-expander is a k-regular graph G = (V,E) on n vertices
(k ≥ 3) such that for every W ⊆ V with card(W) ≤ n/2, the number of
vertices in V \W adjacent to some vertex in W is at least ε card(W). Show

318 CHAPTER 11

that if λ2(G) ≥ 2εk, then G is an ε-expander.

Exercise 11.6. Show that the Laplacian-based heuristic suggested by (11.8)
for adding edges can also be reversed, that is, to remove edges that affect
the algebraic connectivity the least.

Exercise 11.7. Show that in any finite potential game, the best response
dynamics always converge to the Nash equilibrium; that is, prove Theorem
11.7.

Exercise 11.8. Extend the approach for finding lower and upper bounds
on the second smallest eigenvalue of the augmented Laplacian for the case
where the edges are weighted.

Exercise 11.9. Consider the cost αd(i)2 +
∑

j dist(i, j) in the context of
the discussion in §11.2.1. Using this cost, for what values of α is the cycle
graph a social optimal for an n-node network?

Exercise 11.10. Use the approach of §11.6 and a semidefinite programming
solver (such as the one mentioned in notes and references), to maximize
λ2(G) for the weighted versions of K5, P5, and S5, subject to a normaliza-
tion on the sum of the weights. Comment on any observed patterns for the
optimal weight distribution.

Chapter Twelve

Dynamic Graph Processes

“The best way to have a good idea is
to have lots of ideas.”

— Linus Pauling

In this chapter, we consider the situation where the geometry of the net-
work is a function of the underlying system’s states. Certain aspects of
the resulting structure, having a mixture of combinatorial and system the-
oretic features, are then examined. In this avenue, we will explore the
interplay between notions from extremal graph theory and system theory
by considering a controllability framework for what we will refer to as
state-dependent dynamic graphs. We then explore the ramification of this
framework for examining which formations are feasible when the under-
lying interaction model is specified by a state-dependent graph.

In certain classes of distributed systems, the existence and the quality of the
information-exchange mechanism between a pair of dynamic elements is
determined–either fully or partially–by their respective states. We refer to
the resulting structure, reflecting the dynamic nature of the agents’ states on
one hand, and the combinatorial character of their interactions on the other,
as state-dependent dynamic graphs, or state-dependent graphs. As we will
see in this chapter, state-dependent graphs not only put the study of dynamic
networks in the realm of system theory, but also invite us to consider a host
of new problems in system theory that are distinctively combinatorial. A
problem that highlights both of these facets pertains to the “controllability”
of state-dependent graphs. We will also explore the ramification of the state-
dependent graph framework when addressing the problem of determining
the feasibility of state-dependent graph formations.

12.1 STATE-DEPENDENT GRAPHS

Consider a set of cubes that can rotate, whose sides are color-coded. Let
us assume that each color represents one type of sensing or communication

320 CHAPTER 12

(a) (c)(b)

Figure 12.1: (a) The faces of each element are color-coded; (b) the elements
can exchange information when the same color coded sides are facing each
other; (c) the information graph associated with (b)

device that the element employs to exchange information with the other el-
ements in the system. Moreover, we assume that each pair can exchange
information if the correct color sides are facing each other. As an example,
when the elements are color coded as in Figure 12.1(a), we may require that
they can only exchange information when the white, or the black, sides are
facing each other. Hence for the arrangement in Figure 12.1(b), we obtain
the information graph of Figure 12.1(c). An analogous scenario also applies
to, say, multiple spacecraft systems, not just those consisting of “cubesats,”
but also systems such as those depicted in Figure 12.2, where each space-
craft is equipped with a directional antenna for accurate relative sensing. In
this case, the resulting “relative sensing graph” exhibit a dynamic charac-
ter that reflects the relative orientation and position of the multiple space-
craft. Evidently, as the translational and rotational states of these cubical
elements or robotic systems evolve over time, we obtain a sequence of infor-
mation graphs; in particular, we realize that the corresponding information-
exchange graph is state-dependent and, in general, dynamic.

Another example of a state-dependent graph, of particular relevance in the
control of multiple unmanned aerial vehicles (UAVs), is the nearest neighbor
information exchange paradigm. In this framework, there is an information
channel, for example, relative sensing capability, between a pair of UAVs
if they are within a given distance of each other. As the positions of the
UAVs evolve in time, say during the course of a reconfiguration, the under-
lying information exchange infrastructure naturally evolves in time as well,
resulting in a dynamic proximity graph.

12.1.1 From States to Graphs

A state-dependent graph is a mapping, gS , from the distributed system state
space X to the set of all labeled graphs on n vertices G(n), that is,

DYNAMIC GRAPH PROCESSES 321

Figure 12.2: Conceptual configuration for the Terrestrial Planet Imager,
courtesy of JPL/NASA

gS : X → G(n) and gS(x) = G, (12.1)

as illustrated in Figure 12.3. We will occasionally write Gx = gS(x) to high-
light the dependency of the resulting graph on the state x. It is assumed that
the order of these graphs, n, is fixed. Their edge set, E(gS(x)), however, is
a function of the state x.

We need to specify further how the state of the system dictates the ex-
istence of an edge between a pair of vertices in the state-dependent graph.
This is achieved by considering the subset Sij ⊆ Xi × Xj , where Xi and
Xj are the state spaces of agents i and j, respectively, and requiring that
{i, j} ∈ E(gS(x)) if and only if (xi, xj) ∈ Sij; we call Sij the edge states of
vertices i and j. It is assumed that the edge sets are such that (xi, xj) ∈ Sij

if and only if (xj , xi) ∈ Sji for all i, j.1
As an example, for the nearest neighboring scenario obtained from a ∆-

disk proximity graph with second-order agents and threshold value of ρ, the

1Although the existence of an edge between two agents can potentially depend on the
states of other agents, we will not consider this case here. Such more general state
dependency schemes would lead us to state dependent hypergraphs.

322 CHAPTER 12

x

x(k + 1) = f(x(k), u(k))

gS

Gx

networked system
state space X

the set of graphs
of order n

Figure 12.3: State-dependent graphs

edge states are of the form

Sij =
{([

ri

vi

]
,

[
rj

vj

])
| ‖ri − rj‖ ≤ ρ

}
, i, j ∈ [n], i �= j.

Here ri and vi represent, respectively, the position and the velocity of UAV
i, and ρ is a given positive number; this set is shown in Figure 12.4. In
general, we will denote the collection of the edge states Sij by

S = {Sij}i,j∈[n],i�=j with Sij ⊆ Xi × Xj . (12.2)

Example 12.1. Consider two square elements i and j, the four sides of
which have alternatively been labeled by “0” and “1.” The state of each
square, x, is thus represented by one binary state, interpreted as the label
that is facing “up.” Consider the scenario where there is an edge between
the vertices i and j if xi + xj = 0 (mod 2). The state space partitions are
therefore xi(1) = 0, xi(2) = 1, xj(1) = 0, xj(2) = 1, and the set of edge
states is identified as Sij = {(0, 0), (1, 1)}.
Definition 12.2. Given the set system S (12.2), we call the map gS : X →
G(n), with an image consisting of graphs of order n, having an edge be-
tween vertex i and j if and only if (xi, xj) ∈ Sij , a state-dependent graph
with respect to S .2

The image of the state-dependent graph gS , is thus

{G | gS(x) = G, for some x ∈ X} = {Gx |x ∈ X},
which will be denoted by gS(X).

2We could alternatively call S (12.2) itself the state dependent graph.

DYNAMIC GRAPH PROCESSES 323

ρ

ρ

rj

ri

Figure 12.4: The nearest neighbor Sij in R ×R

12.2 GRAPHICAL EQUATIONS

It seems natural that static state-dependent graphs are examined prior to
studying “dynamic” state-dependent graphs. In this section, we consider
problems related to checking for the existence of, and possibly solving for,
states that have a particular graph realization.

12.2.1 Systems of Inequalities

Given the set S (12.2) and a labeled graph G of order n, we consider finding
solutions to the equation

gS(x) = G. (12.3)

Note that, depending on specific applications, “equality” between a pair of
graphs in (12.3) can be considered as a strict equality or up to an isomor-
phism. In § 12.3, we will consider a scenario where it is more natural to
consider a subgraph inclusion relation of the form G ⊆ gS(x) rather than
the equality in (12.3).

Graphical equation solving can become equivalent to solving systems of
equations and inequalities, depending on the characterization of the edge
states in S . Let us elaborate on this observation with two examples.

Example 12.3. Let G = (V,E) and V = {1, 2, 3}. The eight possible
labeled graphs on three vertices is shown in Figure 12.5, with G8 denoting
K3. Thus the equation gS(x) = G8 has a solution if and only if the set

g−1(G8) = {x | (x1, x2) ∈ S12, (x1, x3) ∈ S13, (x2, x3) ∈ S23}

324 CHAPTER 12

G1

1

32

1

32 G4

1

32 G3

1

32 G2

G8

1

32G7

1

32G5

1

2 3 G6

1

32

Figure 12.5: Labeled graphs on three vertices

is nonempty. Similarly, the equation gS(x) = G6, is solvable if and only if
the set

g−1(G6) = {x | (x1, x2) ∈ S12, (x1, x3) ∈ S13, (x2, x3) ∈ S23}
is nonempty.

Example 12.4. For all i, j ∈ {1, 2, 3}, i �= j, assume that

Sij = {(xi, xj) | qij(xi, xj) ≤ 0} ⊆ Rn × Rn,

where qij(xi, xj) = xT
i Qijxj and Qij = QT

ij ∈ Rn×n. Then the equation
gS(x) = G5 (Figure 12.5) has a solution if and only if the set

{x | q12(x1, x2) ≤ 0, q13(x1, x2) ≤ 0, q23(x2, x3) > 0}
is nonempty. On the other hand, this set is empty if and only if q12(x1, x2) ≤
0 and q13(x1, x3) ≤ 0 imply that

q23(x2, x3) ≤ 0.

Now extend the qij , making them functions of x = [x1, x2, x3]T , for ex-
ample, q̃ij(x) = qij(xi, xj) + 0 × xk where k �= i and k �= j, and let
q̃ij(x) = xT Q̃ijx. Using the S-procedure (see Appendix A.5) we con-
clude that gS(x) = G5 has no solution if there exist τ1, τ2 ≥ 0 such that
Q̃23 ≤ τ1 Q̃12 + τ2 Q̃13, where an inequality between two symmetric matri-
ces is interpreted in terms of the ordering induced by positive semidefinite
matrices. See also our discussion on graph realizations in §12.4.

DYNAMIC GRAPH PROCESSES 325

12.2.2 Supergraphs and Equation Solving for a Class of Graphs

We now consider the case when the state space of each individual agent is
a finite set. This might reflect the discrete nature of the underlying state-
space (for example, the cubical agents in Figure 12.1(a) can only assume
a finite number of orientations,) or as a result of bounding and creating
a mosaic for the underlying continuous state space. In this situation, the
state-dependency of the edges among pairs of agents can be represented in
a combinatorial way using a bipartite graph. The aim of this section is to
further elaborate on this connection.

Let us first construct supervertices that represent not only each agent, but
also all the finite states the agent can attain. Thus, if agent i can assume five
distinct states, the supervertex i has five nodes embedded in it–we refer to
the vertices in each supervertex that represent a particular state for that agent
as a subvertex. Each agent thus get inflated in this way. Next, we assign
edges between the subvertices of distinct agents using the state-dependency
relation. Thus if for agents i and j, the edge set Sij contains (xa

i , x
b
j) and Sji

contains (xb
j , x

a
i), then there is an edge between the subvertex xa

i in the ith
supervertex and the xb

j subvertex in the jth supervertex. In this way, each
supervertex is connected to another supervertex via a group of edges that
connect pairs of subvertices in each. Note that the resulting bipartite graph
can be directed; however, as it has been the case in this chapter, we only
focus on the symmetric case, that is, we assume that for all pair of agents
i and j, if (a, b) ∈ Sij then (b, a) ∈ Sji. Continuing this procedure for
pairs of agents, we obtain the “supergraph” Gn(S) as the union of bipartite
graphs that have been obtained for each pair of agents, representing the
state-dependency of the edges between the agents (Figure 12.6).

The supergraph construction is motivated by the graphical equation solv-
ing discussed previously in this chapter. In this direction, we first note that
the subgraphs of the supergraph Gn(S), employing “one” subvertex from
each supervertex, are exactly those graphs that can be formed when agents
assume one of their admissible states. Of course, such constructions have
names in graph theory: we call G a transversal subgraph of the supergraph
Gn(S) if

1. its vertices are subvertices of Gn(S), and

2. its vertices all belong to distinct supervertices of Gn(S).

If G is a transversal subgraph of Gn(S) and contains all of its potential
edges (for the same vertex set), it is called an induced transversal. We will
denote the subgraph and induced subgraph transversal by G ⊆T Gn(S) and
G ⊆I Gn(S), respectively. This is shown in Figure 12.7.

326 CHAPTER 12

Figure 12.6: Supergraph Gn(S); the four oval shaped objects denote the
supervertices, whereas the embedded nodes denote the subvertices.

(a) (b)

Figure 12.7: (a) A transversal subgraph of the supergraph Gn(S) in Fig-
ure 12.6, (b) an induced transversal subgraph of Gn(S)

The supergraph construction has the following immediate ramification.

Proposition 12.5. Given the collection of edge states S (12.2), the equation
gS(x) = G has a solution if and only if G ⊆I Gn(S). Furthermore, the
inclusion G ⊆ gS(x) has a solution if and only if G ⊆T Gn(S).

12.3 DYNAMIC GRAPH CONTROLLABILITY

In this section, we allow the state of each agent to evolve over time, with
the resulting graph assuming a dynamic character–the graph is thus elevated
to a graph process. In fact, we would like to investigate whether one can
define a notion of “controllability” for such graph processes. Controllable
(state-dependent) graph processes are such that every graph (either labeled

DYNAMIC GRAPH PROCESSES 327

S

G-process x-process

Figure 12.8: The x-process and the G-process

or up to an isomorphism, depending on the context) is reachable by a judi-
cious choice of the control sequence for the agents. Our goal is to explore
connections between the controllability of state of the agents, henceforth re-
ferred to as the x-process, and the corresponding graph process named as the
G-process.3 For example, it will be of interest for our discussion to exam-
ine the conditions under which the controllability of the x- and G-processes
become equivalent.

Toward providing a useful notion of graph controllability, we denote by
G(n,∆) the set of graphs of order n with maximum vertex degree ∆.
Therefore, G(n, 0) = {Kn} and G(n, n − 1) = G(n). Our first notion
for graph controllability relies on graph reachability from an arbitrary ini-
tial state.

Definition 12.6. Consider a set of n agents that form a state-dependent
graph. Then the resulting G-process is strictly ∆-controllable if, for any
Gf ∈ G(n,∆) and any initial state x0 ∈ X, there exist a finite k and an
x-process for which Gf ⊆ gS(x(k)). When ∆ = n− 1, we refer to strictly
∆-controllable G-processes as strictly controllable.

Including the maximum degree ∆ qualification in the definition of graph
controllability is not purely accidental, although other graph parameters
could be employed in this definition as well. The maximum vertex degree,
however, does have implications on the relative sensing “overhead” of a net-
worked system and the overall graph “complexity,” and, as such, is a prudent

3We will not delve into the various notions of controllability. The x process is control
lable if for two arbitrary states, there exists a control sequence that steers one to the other.

328 CHAPTER 12

graph parameter in Definition 12.6.
Our second definition of graph controllability relies more on the proper-

ties of the G-process itself rather than the x-process.

Definition 12.7. Consider a set of n agents that form a state-dependent
graph. The G-process is ∆-controllable if, for two graphs G0,Gf belong-
ing to G(n,∆), there exist a finite k and an underlying x-process, for
which

G0 ⊆ gS(x(0)) and Gf ⊆ gS(x(k)).

When ∆ = n − 1, we refer to a ∆-controllable G-process simply as con-
trollable.

The distinction between Definitions 12.6 and 12.7 is the qualification on
graph reachability from an arbitrary state versus from an arbitrary graph,
the latter being less stringent.4

We note that both the cardinalities of the state space for each agent and
the number of elements in the network play an important role in the graph
controllability properties. For example, it can be shown that when the car-
dinality of the state space for each element is p and 2 log p + 1 < n, the
labeled G-process cannot be controllable.5

12.3.1 Calmness

In order to highlight the connection between strict controllability and con-
trollability of the G-process, we introduce the notion of calmness. Calmness
refers to the situation where a particular graph remains invariant as a sub-
graph of gS(x) as the state of the agents x evolves during the interval [to, tf].

Definition 12.8. A graph G ∈ G(n,∆) is strictly calm with respect to the
controlled x-process, if (1) for any x0, xf for which G ⊆ gS(x0), gS(xf),
there exists a control sequence that steers x0 to xf , and (2) for all inter-
mediate states G ⊆ gS(x).

4Observe that ∆ controllability has a cascading property, in the sense that ∆0

controllability for some ∆0 > 0 implies ∆ controllability for all ∆ ≥ ∆0.
5This follows from noting that the G process is certainly not ∆ controllable for some

∆ > 0 if the cardinality of the agent’s state space is less than 2(
n
2), the total number of

labeled graphs on n vertices.

DYNAMIC GRAPH PROCESSES 329

Hence the empty graph Kn is always strictly calm. When the second
qualification in the above definition fails to hold, the graph G ∈ G(n,∆) is
simply called “calm.” Moreover, when every element of a subset of G∆

n is
(strictly) calm with respect to the x-process, the subset itself is referred to
as (strictly) calm.

Let us now use the machinery of ∆-controllable graph processes and
graph calmness to shed light on the relationship between controllability of
the x-process, that is, the controllability of the agents’ state and the control-
lability of the graph process that it generates via the edge state dependency.
In this venue, for a group of n agents, let us define the set

X∆ = {x ∈ X | max
v∈gS(x)

d(v) ≤ ∆} = {x ∈ X | Gx ∈ gS(X) ∩ G(n,∆)},

that is, the set of agents’ state whose corresponding state-dependent graph
on n vertices has a maximum degree less than ∆.

Proposition 12.9. Consider a group of n agents that form a state-dependent
graph. If the G-process is∆-controllable and gS(X) is calm with respect to
the x-process, then the G-process is strictly ∆-controllable in X∆.

Proof. Let z ∈ X∆ and Gf ∈ G(n,∆) be given. It suffices to show that
there is a control sequence steering z to xf where Gf ⊆ gS(xf). The ∆-
controllability of the G-process does imply that there is an x-process, taking
xo to xf , for which gS(z) ⊆ gS(xo) and Gf ⊆ gS(xf). As gS(z), gS(xo) ⊆
gS(xo) and gS(xo) is ∆-calm, there is a control sequence that steers z to xo.
Joining the two control sequences together now completes the proof.

12.3.2 Regularity and Graph Controllability

We now proceed to explore the controllability correspondence between the
x- and the G-processes. In this direction, we first note that if there is a natural
bijection between the x and the G processes, then their system theoretic
properties will have a more direct interrelationship with each other. Thus a
promising direction for allowing us to translate and interpret controllability
properties between the agents’ state and the resulting graph process is to
induce a notion of “pseudo-invertability” that would allow assigning graph
topologies to the underlying state of the agents.

Let us thereby digress a bit to introduce a notion that essentially allows
us to formalize this notion of pseudo-inverse for the edge state dependency
map gS (12.1).

330 CHAPTER 12

12.3.3 Szemerédi’s Regularity

Given the collection of edge states S (12.2), the edge state density between
agents i and j is defined as

�S(Xi,Xj) =
ε(Xi,Xj)

card(Xi) card(Xj)
, (12.4)

where Xi is the state space of agent i, assumed to have finite cardinality,
card(Xi), and ε(Xi,Xj) is the number of edges between Xi and Xj . In the
spirit of §12.2.2, we view Xi, the finite state space of agent i, as a superver-
tex, that is, it represents not only the vertex i, but all the finite number of
states that the agent can attain. The individual supervertices, with the edges
that represent the state-dependent edges between each pair of agents, then
constitute, as in §12.2.2, the supergraph for the multiagent system. Hence,
�S(Xi,Xj) is the ratio between the states that result in an edge between the
two agents i and j and the total number of states that these agents can be
in. In order to avoid carrying around the notion card(Xi), we will assume,
without loss of generality, that card(Xi) = p for all i, and thus (12.4) can
be defined as

�S(Xi,Xj) =
card(Sij)

p2
, (12.5)

where Sij is the pairs of states for agents i and j, that result in an edge
between these agents. Hence for each pair of supervertices, the

(n
2

)
numbers

�S(Xi,Xj) (12.5), each assuming a value in the unit interval, reflect the
ratios of the states that are designated as the edge states.

Now, a moments reflection on how a systematic means of mapping agents’
states to graph topologies, and vice versa, can be developed, reveals that we
need to require that the edge state assignment between the supervertices for
the multi-agent network to be somehow “uniform.” However, this unifor-
mity has to be imposed for each subset of subvertices–which leads us to the
concept of regularity for the supergraph.

Definition 12.10. For ε > 0, the pair (Xi,Xj) is called ε-regular at level
ρ if (1) �S(Xi,Xj) ≥ ρ, and (2) for every Yi ⊆ Xi and Yj ⊆ Xj satisfying

card(Yi) > ε card(Xi) and card(Yj) > ε card(Xj)

one has

|�S(Xi,Xj) − �S(Yi, Yj)| < ε. (12.6)

DYNAMIC GRAPH PROCESSES 331

Let us decipher this definition. We consider two arbitrary supervertices
in a supergraph and find the density of the state-dependent edges between
them. If the supergraph is ε-regular, the density at the supervertex level
should be ε-close to the density of the state-dependent edges when we zoom
in on two arbitrary subsets of subvertices embedded in these respective su-
pervertices. Moreover, we put a bound on how much our lens is required
to zoom in inside each pair of supervertices–we only require the regularity
in the density of the edge states for a group of subvertices that have car-
dinality at least ε times the cardinality of the supervertex that they belong
to. We refer to a supergraph Gn(S) as ε-regular at level ρ if each pair of
its supervertices is ε-regular at a level of at least ρ. We will also denote an
ε-regular supergraph at level ρ by Gn(Sε,ρ) (recall that each supervertex has
p subvertices). An important consequence of the notion of regularity is the
following observation.

Proposition 12.11. Consider two ε-regular supervertices Xi,Xj with

�(Xi,Xj) = ρ.

Let Ψ ⊆ Xi be the set of all subvertices with at least (ρ − ε)card(Xj)
neighbors in Xj . Then

card(Ψ) ≥ (1 − ε)card(Xi).

Proof. Suppose that the number of subvertices xi ∈ Xi, having strictly
fewer neighbors in the supervertex Xj than (ρ − ε) card(Xj), is strictly
more than ε card(Xi). Denote this set by Ψ. Then

ε(Ψ,Xj) < (ρ − ε) card(Ψ)card(Xj),

that is, ε(Ψ,Xj) < (ρ − ε) and the pair (Ψ,Xj) violates the regularity
assumption on the pair (Xi,Xj) (12.6).

We now shift our attention back to the main justification for introducing
the notion of supergraph regularity as an effective means of addressing the
controllability of state-dependent graph processes. The connection is facili-
tated by a result that is referred to as the key lemma in extremal graph theory,
which is discussed next.

12.3.4 Key Lemma

The regularity of the supergraph Gn(S) provides a level of transparency
between the x-process and the G-process, allowing us to make a correspon-
dence between their controllability properties. In fact, the regularity of the

332 CHAPTER 12

supergraph imposes a “pseudo-invertibility” condition on the map gS (12.1)
which has a direct controllability interpretation. This connection is made
more explicit via the key lemma.

Lemma 12.12. Consider a set of n agents that form a state-dependent
graph, with the corresponding supergraph, representing how edges between
each pair of agents depend on their respective states. Let ρ > ε > 0 be
given. Assume that the supergraph denoted by Gn(Sε,ρ) is ε-regular, and
let δ = ρ − ε. Let H be a graph of order n with maximum vertex degree
∆(H) > 0. If

δ∆(H)/(1 + ∆(H)) ≥ ε,

then H ⊆T Gn(Sε,ρ), that is, H is a subgraph transversal of the super-
graph of the multiagent network. Moreover, the number of suchH-subgraph
transversals is at least

(δ∆(H) − ∆(H) ε)n pn, (12.7)

where p is the cardinality of the state space for all agents.

Let us denote by Γ(x) the set of neighboring subvertices of x in the su-
pergraph Gn(S). Key lemma 12.12 is established through the following
constructive algorithm.

Embedding Algorithm

Initialize the sets C0,j = Xj for all j = 1, . . . , n, and set i = 1.

1. Pick xi ∈ Ci−1,i, such that for all j > i for which {i, j} ∈ E(H),
one has

card(Γ(xi) ∩ Ci−1,j) > δ card(Ci−1,j). (12.8)

Proposition 12.11 guarantees that the set of such states is nonempty;
in fact, the cardinality of the set of states that violate (12.8) is at most
∆(H)εp.

2. For each j > i, let

Ci,j =
{

Γ(xi) ∩ Ci−1,j if {i, j} ∈ E(H),
Ci−1,j otherwise.

3. If i = n, terminate the algorithm; otherwise, let i = i + 1 and go to
Step 1.

DYNAMIC GRAPH PROCESSES 333

In Step 2 of the algorithm, denote the cardinality of the set {k ∈ [i] | {k, j} ∈
E(H)} by dij ; then one has

card(Ci,j) > δdij p ≥ δ∆(H) p,

when dij > 0, and card(Cij) = p when dij = 0. In both cases, card(Ci,j) >

δ∆(H)p when j > i. Moreover, when choosing the exact location of xi, all
but at most ∆(H)εp vertices of Ci−1,i satisfy (12.8) as needed in Step 1 of
the algorithm. Thus when finding the transversal H in G(n,Sρ,ε), at least

card(Ci−1,i) − ∆(H)εp > δ∆(H)p − ∆(H)pε (12.9)

free choices exist for each xi. The estimate (12.7) for the number of embed-
dings of H in G(n,Sρ,ε) now follows from (12.9).

Example 12.13. In the network of n agents, with agent i having a finite
state space Xi of cardinality p, a state xi ∈ Xi is called a blind state of i
with respect to j if

(xi, xj) �∈ Sij for all xj ∈ Xj;

denote by bij the number of such states. For this example, let bij = bji and
furthermore, assume that all other states are edge states,

Sij = (Xi × Xj) \ ({ ith agent’s blind states with respect to j }
×{ jth agent’s blind states w.r.t. i }).

Thus ρ = �S(Xi,Xj) = 1 − (b2
ij/p

2).
We now proceed to check for the existence of subgraphs with vertex degree

of at most 2 for the corresponding state-dependent graph on n agents. Let
ε = m/p. Lemma 12.12 suggests that we need to ensure the inequality

ρ ≥ ε +
√

3 ε, (12.10)

and that for all Yi ⊆ Xi and Yj ⊆ Xj of size strictly greater than m,

| ρ − �S(Yi, Yj) | <
m

p
. (12.11)

The maximum deviation of the quantity �S(Yi, Yj) from the edge state den-
sity ρ occurs when

�S(Yi, Yj) = 1 −
b2
ij

(m + 1)2
.

334 CHAPTER 12

Thus for ε-regularity it suffices to have
p

m(m + 1)2
− 1

mp
<

1
b2
ij

. (12.12)

We now note that for particular values of p and m in (12.11) and (12.12),
one can obtain an allowable number of blind states between each pair of
agents so that state-dependent subgraphs with vertex degree of at most 2
are still guaranteed to exist for the n-agent network. For example, when
p = 100 and m = 20, having b = 9 satisfies both inequalities (12.10)
and (12.12). Thereby, almost 10 percent of each agent’s states can be blind
states with respect to another agent, while still guaranteeing the existence of
any state-dependent subgraph with a maximum vertex degree 2. In fact, the
bound (12.7) indicates that there are plenty of such subgraph transversals
in the corresponding supergraph–in this example, at least 20n of them!

A few remarks are in order at this point. Note that guaranteeing the ex-
istence of a transversal embedding H in the supergraph G(n,Sε,ρ) does not
depend on the parameters ρ or ε individually. In fact, it is their difference
ρ − ε that dictates the number of such embeddings in Gn(Sε,ρ); that is, it is
the relative order of density with respect to the “fineness” of regularity that
prescribes the number of embeddings. In the meantime, the maximum ver-
tex degree of the desired embedding accounts for the ease by which it can be
embedded in the supergraph Gn(Sε,ρ), that is, to be realized by a judicious
choice of the underlying dynamic states. Furthermore, the embedding algo-
rithm suggests a constructive approach through which the desired subgraph
can be synthesized.

12.3.5 Graph Controllability

We now reach the main result of this section–stated for a group of dynamic
agents with a finite state space. We note however, that the approach can be
generalized to other classes of dynamic systems (see Figure 12.9).6

Theorem 12.14. The G-process is ∆-controllable if the x-process is con-
trollable and the supergraph G(n,Sε,ρ) satisfies

(ρ − ε)∆/(1 + ∆) ≥ ε.

On the other hand, the x-process is controllable if the G-process is control-
lable and gS(X) is calm with respect to the x-process.

6The generalization involves partitioning the state space to finitely many regions and
employing “measure” in place of “size” to obtain the required extension for the notion of
regularity.

DYNAMIC GRAPH PROCESSES 335

ẋ(t) = f(x(t), u(t))

y(t) = gS(x(t))

u(t) y(t)

Figure 12.9: Dynamics of state-dependent graphs

Proof. Assuming that the x-process is controllable, consider graphs

G0,Gf ∈ G(n,∆).

By regularity of the supergraph G(n,Sε,ρ), there exist xo, xf ∈ X such that
G0 ⊆ gS(xo) and Gf ⊆ gS(xf). By controllability of the x-process, how-
ever, there is a control sequence that steers xo to xf ; thus the G-process is
∆-controllable. Now assume the controllability of the G-process and con-
sider an arbitrary pair xo, xf ∈ X, with the corresponding state-dependent
graphs gS(xo), gS(xf). Thereby, there are x̃0, x̃f , and a control sequence
such that gS(xo) ⊆ gS(x̃0) and gS(xf) ⊆ gS(x̃f). As gS(x̃0) ⊆ gS(x̃0)
and gS(x̃f) ⊆ gS(x̃f), by the calmness assumption (Definition 12.8), there
is a control sequence from xo to x̃f , and analogously from x̃f to xf (see
Figure 12.10). By joining these three control sequences together, we obtain
a control sequence that steers xo to xf , and hence the controllability of the
x-process.

Hence, when the underlying x-process in Example 12.13 is controllable,
the associated G-process is ensured to be 2-controllable.

x0

calmness calmness

G-controllability

x̃0
x̃f

xf

Figure 12.10: Controllability of the x-process in Theorem 12.14

336 CHAPTER 12

12.4 WHAT GRAPHS CAN BE REALIZED?

In this section, we focus our attention on a particular class of state-dependent
graphs, namely, ∆-disk proximity graph encodings of the limited-range ad-
jacency relationships between points in the plane. Suppose we have n such
point agents in R2. Each agent is equipped with a range-limited sensor by
which it can sense the position of other agents. All agents have identical
sensor ranges ∆. Let the position of each agent be xi ∈ R2, and its dynam-
ics be given by

ẋi = f(xi, ui), (12.13)

where ui ∈ Rm is the control for agent i, and f : R2 × Rm → R2 is
a smooth vector field. The configuration space of the agent formation is
made up of all ordered n-tuples in R2, with the property that no two points
coincide, that is,

Cn(R2) = (R2 × R2 × · · · × R2)\P, (12.14)

where P = {(x1, x2, . . . , xn) | xi = xj for some i �= j}. The evolution of
the formation can be represented as a trajectory

F : R+ → Cn(R2),

usually written as F (t) = [x1(t), x2(t), . . . , xn(t)]T to signify time evolu-
tion.

Now, let G(n) denote the space of all possible graphs that can be formed
on n. Then we can define the function

Φn : Cn(R2) → G(n)

with Φn(F (t)) = G(t), where G(t) = (V,E(t)) ∈ G(n) is the ∆-disk
proximity graph of the formation F (t). As before, vi ∈ V represents
agent i at position xi, and E(t) denotes the edges of the graph, that is,
eij(t) = eji(t) ∈ E(t) if and only if ‖xi(t) − xj(t)‖ ≤ ∆, i �= j. These
graphs are simple by construction, that is, there are no loops or parallel
edges. The graphs are always undirected because the sensor ranges have
been assumed to be identical. The motion of the agents may result in the
removal or addition of edges in the graph. Therefore G(t) is a dynamic
structure. Last and most important, every graph in G(n) is not a valid prox-
imity graph, as we will see shortly.

The last observation is not as obvious as the others, and we say that a
realization of a graph G ∈ G(n) is a formation F ∈ Cn(R2) such that
Φn(F) = G. An arbitrary graph G ∈ G(n) can therefore be realized as a
proximity graph in Cn(R2) if Φ−1

n (G) is nonempty. We denote by the set

DYNAMIC GRAPH PROCESSES 337

Gn,∆ ⊆ G(n), the space of all possible graphs on n agents with sensor
range ∆, that can be realized in Cn(R2).

For n = 1, the configuration space is C1(R2) � R2 and the only possible
graph on one agent is always realizable, that is, G1,∆ = G(1). For n = 2,
the situation corresponds to whether the two agents are within ∆ distance
of each other or not. Therefore all formations in the subset

{(x1, x2) | ‖x1 − x2‖ ≤ ∆, x1 �= x2} ⊆ C2(R2)

correspond to the connected graph of two vertices, while the remaining con-
figuration space corresponds to the situation when the graph is disconnected.
And so we have G2,∆ = G(2).

Moving on to the case with n = 3, there are only four graphs (up to
isomorphisms) in G(3), namely, the ones with edge sets

E = ∅, {{1, 2}}, {{1, 2}, {2, 3}}, and {{1, 2}, {2, 3}, {1, 3}}.

It is clear that these graphs can all be realized in the plane by placing the
agents at an appropriate distance from each other, and hence G3,∆ = G(3).
A similar enumeration (see Exercise 12.10) of the case when n = 4 reveals
that also in this case the graph classes are identical, that is, G4,∆ = G(4).

(x11, x12)
l12

l13

ψ123

l23

(x31, x32)

(x21, x22)

Figure 12.11: Three agents and their interagent distances

An additional observation about the n = 3 case will prove useful once
we move to n > 4. Consider the situation in Figure 12.11, where the three
agents are positioned at the points marked by circles. Under the notation
in that figure, one can establish (using nothing but basic trigonometry), that
whenever we have two edges eij and eik in a ∆-disk proximity graph (with
agents in the plane) that share a vertex vi in such a way that there is no edge
between vertices vj and vk, then

ψj,i,k = cos−1

(〈xj − xi, xi − xk〉
‖xj − xi‖‖xi − xk‖

)
>

π

3
. (12.15)

338 CHAPTER 12

1

2

3

4
5

(a)

1

2

3

4

5

6

(b)

1

2

3

4

5

6

7

(c)

Figure 12.12: Graphs that are not valid proximity graphs

Now, let us put (12.15) to use in the case when n > 4. Denote by L5 and
L6 the graphs in G(5) and G(6), respectively, shown in Figures 12.12(a)
and 12.12(b). It is straightforward to show that L5 does not belong to G5,∆.
This is because, if it is realizable, then the angles ψ415, ψ512, ψ123, ψ235,
ψ534, and ψ341 are all greater than π

3 , in light of (12.15). As a consequence,
if L5 were indeed realizable, we would have ψ415 + ψ512 + ψ123 + ψ235 +
ψ534 + ψ341 > 6

(
π
3

)
= 2π. But since x1, x2, x3, x4 ∈ R2 are vertices of a

polygon of 4 sides, we have ψ415 +ψ512 +ψ123 +ψ235 +ψ534 +ψ341 = 2π,
which is a contradiction.

Similarly, one can establish that L6 �∈ G6,∆, as well as that the star graph
Sn ∈ G(n) does not belong to Gn,∆ for any n > 6 (see Figure 12.12(c)).
We summarize the findings as a theorem.

Theorem 12.15. For agents in the plane, Gn,∆ = G(n) if and only if
n ≤ 4.

12.5 PLANNING OVER PROXIMITY GRAPHS

Based on the discussion in the previous section, it would be interesting
to know the answer to the following question. Given an arbitrary graph
G ∈ G(n), can it be realized as a ∆-disk proximity graph for agents in
the plane, that is, in Cn(R2)? To answer this question, we note that each
proximity graph (V,E) for the formation [x1, x2, . . . , xn]T ∈ Cn(R2) can
be described by n(n − 1)/2 relations of the following form:

1. ‖xi − xj‖ ≤ ∆ if eij ∈ E,

2. ‖xi − xj‖ > ∆ if eij �∈ E.

DYNAMIC GRAPH PROCESSES 339

Let xi = (xi,1, xi,2) for all 1 ≤ i ≤ n. Then each of these relations can be
written as inequality constraints, {fk ≥ 0}, where each

fk ∈ R[x1,1, x1,2, . . . , xn,1, xn,2],

is a polynomial in 2n variables over the real numbers. Therefore, the realiza-
tion problem is equivalent to asking if there exist x1,1, x1,2, . . . , xn,1, xn,2

such that the following inequality constraints are satisfied.

∆2 − (xi,1 − xj,1)2 − (xi,2 − xj,2)2 ≥ 0 if eij ∈ E,

(xi,1 − xj,2)2 + (xi,2 − xj,2)2 − ∆2 > 0 if eij /∈ E,

where 1 ≤ i < j ≤ n. Although these expressions may look messy, they are
in fact checkable using tools in algebraic geometry, namely, those pertaining
to semialgebraic sets. Without going into the details of these computations,
we simply observe that there are plenty of computational tools that will help
us solve this and similar feasibility problems. As such, by planning over
controllable graph processes, while taking the feasibility of the individual
graphs into account, we thus have a method for moving nodes in order to go
between target graph topologies, for example, by maintaining connectivity.
An example of this is shown in Figure 12.13, in which an initial graph is
turned into a path graph by only moving one node at the time to generate
the appropriate graph process.

SUMMARY

In this chapter we considered graphs with incidence relations that are dic-
tated by the underlying dynamic states of the agents. We subsequently
considered solving graphical equations over such state-dependent graphs,
followed by introducing a controllability concept for the corresponding dy-
namic graphs. The utility of the notion of state-dependent graphs in charac-
terizing feasible formations in the plane concluded this chapter.

NOTES AND REFERENCES

State-dependent graphs as presented in this chapter were introduced by Mes-
bahi in [156],[157].7 However, there are a number of earlier works that
parallel this framework. First, we mention the work of Aizerman, Gu-
sev, Petrov, Smirnova, and Tenenbaum in [6] where a process of the form

7The conceptual configuration for the Terrestrial Planet Imager in Figure 12.2 can be
found in [3].

340 CHAPTER 12

Figure 12.13: A graph process that generates a path graph

G(t+1) = F (G(t)) is considered, with G(t) denoting the graph structure at
time t, and F a transformation that maps this graph to G(t+1). As Aizerman
and co-authors point out in [6], the motivation for their work had come from
mathematical studies on administrative structures, organization of commu-
nication and service systems, arrangement for the associative memory of a
computer, and so on. In this work, after introducing the notion of “subordi-
nate” functions that operate over trees, the authors consider fixed point and

DYNAMIC GRAPH PROCESSES 341

convergence properties of the resulting graph transformation. Related to this
work, and in particular to the preceding paper of Petrov [192], the notions of
web and graph grammars are also aligned with the state-dependent graphs.

Graph grammars are composed of a finite set of initial graphs, equipped
with and closed with respect to a finite set of rules, for their local graph
transformation. The general area of graph grammars has flourished as an
active area of research in computer science, with many applications in soft-
ware specification and development, computer graphics, database design,
and concurrent systems; see, for example, the handbook on graph grammars
edited by Rozenberg [209]. Another area of research related to the present
chapter is graph dynamics as described in [196] and references therein. The
motivation for this line of work comes from an attempt to generalize a wide
array of results in graph theory pertaining to the line graph operator (see
Chapter 3). An early result in this area goes back to the early 1930s, where
Whitney [244] showed that every finite connected graph, except the triangle,
has at most one connected line graph inverse.

The key lemma was originally employed in combinatorial number theory
to resolve a famous conjecture of Erdős and Turán. Its application to some
open problems in extremal graph theory is more recent; see, for example,
Komlós and Simonovits [135]. Finally, the last part of the chapter on the
realization problem are based on the works by Muhammad and Egerstedt
in [163],[164].

SUGGESTED READING

We refer to the excellent survey of Komlós and Simonovits [135] for more
on the key lemma and its various applications in extremal combinatorics.
Linear matrix inequalities and S-procedure are discussed in Boyd, El Ghaoui,
Feron, and Balakrishnan [33]. For more on theoretical and computational
aspects of solving polynomial inequalities we recommend Parrilo [190]; for
more applications of positive polynomials in systems and control, see Hen-
rion and Garulli [116].

EXERCISES

Exercise 12.1. Consider four cubes whose faces are colored red (R), blue
(B), green (G), and yellow (Y), as shown in the figure. Can one pile up
these cubes in such a way that all four colors appear on each side of the
pile? Find graphical and algebraic conditions that could be checked for
the solvability of this “four cubes problem” for a given choice of the color

342 CHAPTER 12

patterns. Warning: this puzzle is also called Insanity.

R Y G B

Cube 1 Cube 2 Cube 3 Cube 4

R

R

R

R

R RB B B

B

Y

Y

Y Y

Y

G
G

G

G G

Exercise 12.2. The ε-regular graphs (in the sense of Szemerédi) are often
called “quasi-random,” highlighting their resemblance to a random graph in
the eyes of a graph theorist. In what sense do such graphs behave like a
random graph?

Exercise 12.3. Extend Theorem 12.14 on graph controllability to the case
where the state space of each agent is R2.

Exercise 12.4. Show that ∆0-controllability for some ∆0 > 0 implies ∆-
controllability for all ∆ ≥ ∆0.

Exercise 12.5. Is a k-regular graph, that is, a graph where every vertex
has degree k, ε-regular in the sense of Szemerédi for any choice of ε?

Exercise 12.6. What is the significance of the inequalities card(Yi) >
ε card(Xi) and card(Yj) > ε card(Xj) in Definition 12.10 in the context
of the key lemma 12.12?

Exercise 12.7. Consider a group of ten vehicles in the unit disk; each vehi-
cle can sense another vehicle within the radius of 0.1 units. Is the Peterson
graph a feasible sensing network?

Exercise 12.8. Instead of a ∆-disk proximity graph, consider a ∆-square
proximity graph. In other words, if xi = [xi,1, xi,2]T is the planar posi-
tion of agent i, the edge {i, j} ∈ E if and only if |xi,1 − xj,1| ≤ ∆ and
|xi,2 − xj,2| ≤ ∆. For such a proximity sensor, what is the maximum n
such that the star graph on n agents is a realization of a feasible formation?

Exercise 12.9. Explain the purpose of introducing the notion of calmness
in §12.3.1. Specifically, provide a counterexample for the main statement in
Proposition12.9 if the calmness assumption is violated.

DYNAMIC GRAPH PROCESSES 343

Exercise 12.10. In order to show that G4,∆ = G(4), one needs to enumer-
ate all graphs in G(4) and show that they can indeed be realized by a planar
formation. How many graphs are there in G(4)?

Exercise 12.11. Derive the expression in (12.15).

Chapter Thirteen

Higher-order Networks

“To be is to be the value of a variable.”
— W. Quine

As network connectivity is one of the key factors determining the perfor-
mance of coordinated control algorithms, one can take connectivity one
step farther and study other types of structures associated with connectiv-
ity. For instance, instead of just considering edges, one can consider the
areas spanned by the edges, and view these areas as encoding coverage
properties. In this chapter, we generalize network graphs and relate them
to the so-called higher-dimensional simplicial complexes. In particular, we
show how certain proximity graphs generalize to Rips complexes, and we
use these complexes to address the coverage problem for sensor networks.

In this chapter, we point out how the concepts developed in this book
can be generalized beyond graphs to higher-order structures. However, a
disclaimer is already in order at this point; we do not present a particularly
mature body of work, as it pertains to networked systems. Rather, we simply
point out some possible (and certainly fascinating) extensions.

13.1 SIMPLICIAL COMPLEXES

To take the step from graph models, where the key objects are nodes and
edges, to richer structures, one first needs to turn to algebraic topology. In
fact, a graph can be generalized to a more expressive combinatorial object
known as a simplicial complex. Given a set of points V , a k-simplex is
an unordered subset {v0, v1, . . . , vk}, where vi ∈ V and vi �= vj for all
i �= j. The faces of this k-simplex consist of all (k − 1)-simplices of the
form {v0, . . . , vi−1, vi+1, . . . , vk} for 0 < i < k. A simplicial complex is a
collection of simplices which is closed with respect to the inclusion of faces.
Graphs are a concrete example, where the vertices of the graph correspond
to V , and the edges correspond to 1-simplices.

346 CHAPTER 13

Examples of these constructions are given in Figure 13.2. In that figure,

v1 ∼U v2, v2 ∼U v3, v1 ∼U v3, v2 ∼U v4,
v3 ∼U v4, v4 ∼U v5, v4 ∼U v6,

that is, the normal adjacency relations between vertices become upper adja-
cencies in this setting. Moreover, the edges also satisfy adjacency relations
in that

e1 ∼U e2, e1 ∼U e3, e2 ∼U e3, e3 ∼U e4, e4 ∼U e5, e3 ∼U e5

since these edges are (pairwise) common faces of the same 2-simplex. Also,
the edges that share vertices are lower adjacent, that is,

e1 ∼L e2, e1 ∼L e3, e2 ∼L e3, e1 ∼L e4, e3 ∼L e4, e3 ∼L e5,

e2 ∼L e5, e4 ∼L e5, e4 ∼L e6, e4 ∼L e7, e5 ∼L e6, e5 ∼L e7, e6 ∼L e7.

Finally, the two 2-simplices are lower adjacent since they share an edge (e3),
that is, ξ1 ∼L ξ2.

v1 v2

v3
v4

v5

v6

e1

e2

e3

e4

e5

e6

e7

ξ1

ξ2

Figure 13.2: Simplicial complex

Now, given an oriented simplicial complex X, suppose that the k-simplex
σ is a face to the (k + 1)-simplex ξ. If the orientation of σ agrees with the
one induced by ξ, then σ is said to be similarly oriented to ξ. If not, we say
that the simplex is dissimilarly oriented. Returning to Figure 13.2, e1 and
e3 are similarly oriented with respect to ξ1, while e2 is not. Also, e3, e4, and
e5 are all dissimilarly oriented with respect to ξ2.

Consider next the simplicial complex X. Let, for each k ≥ 0, the vec-
tor space Ck(X) be the vector space whose basis is the set of oriented k-
simplices of X. For k larger than the dimension of X, we set Ck(X) = 0.

The boundary map is defined to be the linear transformation

∂k : Ck → Ck−1,

348 CHAPTER 13

product structure to each Ck(X) and, subsequently, get an adjoint operator
∂∗

k : Ck−1(X) → Ck(X) for each map ∂k. Each adjoint map ∂∗
k can be

expressed as the transpose of the matrix representation of ∂k. We therefore
have another chain complex as

· · ·
∂∗

k+2←− Ck+1

∂∗
k+1←− Ck

∂∗
k←− Ck−1 · · ·

∂∗
2←− C1

∂∗
1←− C0.

In fact, one can now define the Laplacian operator ∆k : Ck(X) → Ck(X)
by

∆k = ∂k+1∂
∗
k+1 + ∂∗

k∂k, (13.2)

with the corresponding set of harmonic k-forms defined as

Hk(X) = {c ∈ Ck(X) : ∆kc = 0}. (13.3)

Then, from a branch of algebraic topology known as Hodge theory, we know
that each Ck(X) decomposes into orthogonal subspaces as

Ck(X) = Hk(X) ⊕ Im(∂k+1) ⊕ Im(∂∗
k), (13.4)

where the Laplacian operator ∆k = ∂k+1∂
∗
k+1 +∂∗

k∂k becomes invariant on
each of these subspaces, and positive definite on the images of ∂k+1 and ∂∗

k .
As mentioned earlier, the boundary operators and their adjoints have ma-

trix representations. In other words, we can also give a matrix representation
to the Laplacian. We denote the matrix associated with the k-dimensional
Laplacian as Lk. And, through this matrix representation, it can be seen that
the familiar graph Laplacian is synonymous with L0 (or ∆0 : C0(X) →
C0(X)) defined above. Since there are no simplices of negative dimension,
C−1(X) is assumed to be 0. Also, the maps ∂0 and ∂∗

0 are assumed to be
zero maps, so that

∆0 = ∂1∂
∗
1 . (13.5)

But this expression looks suspiciously like the standard graph Laplacian,2

L = DDT ,

where D is the incidence matrix. Moreover, as we can think of the boundary
map ∂1 : C1(X) → C0(X) as mapping edges to vertices–just like the

2We will continue to suppress the notational dependency of D on the underlying graph in
this section for reasons that become evident shortly.

HIGHER ORDER NETWORKS 349

incidence matrix–we can draw the conclusion that its matrix representation
is exactly equal to the standard graph theoretic incidence matrix D.

To make this observation a bit more concrete, let us return to the simpli-
cial complex in Figure 13.2. There the incidence matrix is given by

D1 =

⎡⎢⎢⎢⎢⎢⎢⎣
−1 −1 0 0 0 0 0

1 0 −1 1 0 0 0
0 1 1 0 −1 0 0
0 0 0 −1 1 −1 −1
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ,

where we explicitly include the subscript 1 to highlight the fact that this
is the matrix representation of the boundary operator ∂1, defined over the
edges, that is, one-dimensional objects. To see this, note that

D1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣
−1

1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

that is, edge e1 has v1 and v2 as its boundary vertices, and it originates at v1
and ends at v2.

When constructing D2, we need to think of it as an incidence-type matrix
that operates on surfaces and returns edges. In that matrix, the signs of
the nonzero entries will be determined by whether the orientations of the
1-simplices are similar to the 2-simplex for which they are faces. In other
words, for the simplicial complex in Figure 13.2, we get

D2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
−1 0

1 −1
0 −1
0 −1
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

350 CHAPTER 13

As a sanity check, we note that

D2

[
1
0

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
−1

1
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

that is, the faces to ξ1 are e1, e2, and e3, with e1 and e3 similarly oriented
and e2 dissimilarly oriented to ξ1,.

With D1 and D2, we can now compute the Laplacian operator

L1 = D2D
T
2 + DT

1 D1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 0 0 1 0 0 0
0 3 0 0 −1 0 0
0 0 4 0 0 0 0
1 0 0 3 0 1 1
0 −1 0 0 3 −1 −1
0 0 0 1 −1 2 1
0 0 0 1 −1 1 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

13.3 TRIANGULATIONS AND THE RIPS COMPLEX

The discussion so far has focused on simplicial complexes in general. How-
ever, in communication networks, or for that matter any other network in
which the edges correspond to the existence of a communication/sensing
link between adjacent nodes, a particular simplicial complex appears natu-
rally.

Triangulated surfaces form concrete (and by now somewhat familiar) ex-
amples of simplicial complexes, as already displayed in Figure 13.2. In
these triangulations, the vertices correspond to 0-simplices, edges corre-
spond to 1-simplices, and faces correspond to 2-simplices. In fact, when
looking at a network graph, for example, one obtained from a ∆-disk prox-
imity graph, drawn in the plane using straight lines between nodes, we see
various triangles that overlap and mash together in a complex manner. These
triangulations are given by a projection of the so-called Rips complex on the
plane. A natural question is whether these triangles can be arranged or cho-
sen so as to form a clean triangulation of the planar region “bounded” by
the network, as was the case for the coverage problem in Chapter 7.

The Rips complex, which traces its origins back to the work of Vietoris
on homology theory in the 1930s, is a way of lifting a graph to a higher-

HIGHER ORDER NETWORKS 351

dimensional complex. The briefest definition of the Rips complex, R, as-
sociated with a graph is that it is the largest simplicial complex having the
graph as a 1-dimensional skeleton. In the context of networked systems,
interacting over sensing of communication channels, the nodes in the net-
work correspond to the 0-simplices (or vertices). Likewise, the 1-simplices
of R are precisely the edges of the ∆-disk proximity graph. In general,
the k-simplices correspond to sets of k + 1 nodes that are pairwise within
communication or sensing range of each other.

It is helpful to visualize the Rips complex as drawn in the two bottom
drawings of Figure 13.4. Intuitively, the Rips complex lifts the proxim-
ity graph to a higher-dimensional space that collates relationships between
more than two agents. In contrast, in a proximity graph, the edges allow
the study of pairwise relations only. Therefore, the Rips complex is a more
powerful way of capturing the spatial and communication relations between
agents.

For a multiagent system equipped with radios, the Rips complex can be
constructed using synchronous broadcast protocols. What is needed is that
each agent becomes aware of those simplices of which it is a member, as
well as a knowledge of which other agents share those simplices. To achieve
this, suppose that each agent carries a unique identification tag. Also, as-
sume that each agent is capable of communicating its identification tag to
its neighboring agents along with some other information of interest. Each
agent also maintains an array of lists of identification tags, where each list
corresponds to a simplex of which the agent is a part of, as seen in Figure
13.5.

Initially, each agent is aware only of its own identification tag. The first
entry in the list is this identification tag, which generates the 0-simplices
of the Rips complex R. The agents simultaneously broadcast their identi-
fication. The agents within communication range receive this information
and add the received tags paired with their own tags to their respective lists.
This generates the 1-simplices, or the edges in the simplicial complex. Fol-
lowing this, the agents broadcast their list of edges. After reception, each
agent compares the received list of edges to its own list and searches for a
cycle, thus generating the 2-simplices, and so on. In this way, all simplices
of dimension k or lower are discovered in k broadcasts.

13.3.1 A Triangulation Algorithm

The discovery of the Rips complex, for example, using the algorithm dis-
cussed in the previous section, allows us to produce triangulations of the
network in a decentralized manner. Loosely speaking, such a triangulation
lets us study the shape of a network from a planar perspective, for example,

354 CHAPTER 13

Figure 13.6: Crossing generators

∆-disk proximity graph. Once we have such an encoding, local rules can
be defined for removing the crossing edges such that the underlying trian-
gulation is preserved and the removal of edges is guaranteed never to create
artificial holes. An example of the application of this algorithm is given in
Figure 13.7, where a ∆-disk proximity graph is shown together with the
triangulation (the simplicial complex) obtained by removing the crossing
edges.

Figure 13.7: The simplicial complex obtained by the removal of crossing
edges, resulting in a triangulation

But, what does the topology of the triangulation associated with a proxim-
ity graph characterize? Topologically, one triangulation differs from another
in the number and configuration of holes, the presence of which is of sig-
nificant importance for the study of routing algorithms in sensor networks.
The existence and configuration of holes regulate nonunique optimal rout-
ing paths between nodes. On a deeper level, the global topology of the Rips
complex impacts coverage problems in sensor networks.

13.4 THE NERVE COMPLEX

As we have seen repeatedly in this book, the graph Laplacian is a powerful
tool that allows the network topology to be directly incorporated into the

HIGHER ORDER NETWORKS 355

equations of a networked dynamical system. The most direct application of
this idea is the agreement protocol, with the simple averaging law

ẋi(t) = −
∑

vi∼vj

(xi(t) − xj(t)),

which can be rewritten as
dc(x, j)

dt
= −L0c(x, j),

where the component operator is given through c(x, j) = (x1,j , . . . , xn,j)T .
We know that for a connected graph the spectral properties of L0 imply that
all states converge toward a common state. It would be interesting to see
whether the higher-order combinatorial Laplacians could be used to design
distributed algorithms as well. In this section, we study the particular prob-
lem of controlling the coverage radii in planar sensor networks.

Let there be n sensor nodes. Each sensor node i is located at position xi,
and has a circular coverage domain of radius ri. We assume that each sensor
node is capable of adjusting its area of coverage by increasing or decreasing
ri. We further assume that each sensor node has the ability to communicate
with its neighboring nodes.

Now, given a collection of sets U = {Uα}α∈A, where A is an index-
ing set, the nerve complex of U , N (U), is the abstract simplicial complex
whose k-simplices correspond to nonempty intersections of k + 1 distinct
elements of U . Hence, the vertices of N (U) correspond to the individual
sets {Uα}α∈A themselves.

The 0-chain C0 is therefore a vector space spanned by {Uα}. An edge in
N (U) exists between two vertices Uαi and Uαj if and only if Uαi ∩Uαj �= ∅.
Therefore C1 is a vector space spanned by all nonempty mutual intersections
between the elements of U . Similarly, k-dimensional simplices correspond
to nonempty intersections

⋂k
i=0 Uαi of k + 1 of elements of U . We will

abbreviate the intersection
⋂k

i=0 Uαi by Uα0α1···αk
. The boundary of a k-

simplex is now defined as,

∂ (Uα0α1···αk
) =

k∑
i=0

(−1)i
(
Uα0···αiαi+1···αk

)
.

By linearity, the boundary operator can be defined for any element of the
vector space. Therefore ∂k : Ck → Ck−1 maps a linear combination of
k-fold set intersections in Ck to a linear combination of (k − 1)-fold set
intersections in Ck−1. An example of a collection of sets and its nerve
complex is depicted in Figure 13.8.3

3It should be noted that the nerve complex is not restricted to circular disks only.

358 CHAPTER 13

SUMMARY

This chapter generalizes the concept of a graph, that is, a combinatorial
structure consisting of edges and vertices, by observing that edges are essen-
tially 1-dimensional objects, while vertices are 0-dimensional. In a similar
manner, one can form surfaces of various dimensions in order to obtain the
so-called simplicial complexes, which leads to the field of algebraic topol-
ogy. The standard graph is in fact a special case of a simplicial complex,
and in this chapter we have discussed two such complexes, namely, the Rips
complex and the nerve complex. The Rips complex is useful for describing
triangulations (of various orders) over graphs, while the nerve complex can
be used to encode the overlapping sensing regions in sensor networks.

Simplicial complexes allow us to define higher-order Laplacian operators
as generalizations of the “normal” graph Laplacian. In fact, these higher-
order combinatorial Laplacians are defined through

∆k = ∂k+1∂
�
k+1 + ∂�

k∂k,

where the ∂k operator is the boundary operator (thought of as a higher-order
incidence matrix) and ∂�

k denotes the adjoint operator of ∂k.

NOTES AND REFERENCES

The idea to define higher-order Laplacian operators for describing dynamic
flows in networked systems was outlined by Muhammad and Egerstedt in
[166], and extended by Muhammad and Jadbabaie in [167],[168]. However,
algebraic topology and networked systems has a much richer history, with
key references in the networked area including those by de Silva, Ghrist,
and Muhammad [68] and de Silva and Ghrist [69].

SUGGESTED READING

The use of algebraic topology for networked systems is very elegantly used
by de Silva and Ghrist in [70], where the persistence of dynamic “holes” in
a sensor network implies that it is possible to evade detection indefinitely.
A general and fairly accessible discussion of the (much) larger topic of al-
gebraic topology is given in Armstrong [11] and Munkres [169]. The com-
panion topic of discrete exterior calculus is discussed by Desbrun, Hirani,
and Marsden in [67].

360 CHAPTER 13

e1

e2

e3

e4

e5

e6

e7

e8
e9

v1
v2

v3 v4

v5

v6

v7

s1
s2

Exercise 13.2. In a (scalar) directed graph, let e1, . . . , em correspond to the
edges obtained by eij = xi − xj if (vj , vi) ∈ E, that is, a directed edge
has vj as its tail and vi as its head. For such a system, we could define an
agreement protocol directly over the edges as

ė(t) = −L1e(t),

where e = [e1, . . . , em]T ∈ Rm. Show that this is indeed the same protocol
as the standard (node-based) agreement protocol

ẋ(t) = −L0x(t).

Exercise 13.3. Recall that for scalar node-states xi, i = 1, . . . , n, the agree-
ment protocol ẋ(t) = −L0x(t) is indeed capturing the averaging interaction
rule

ẋi(t) = −
∑

j∈N(i)

(xi(t) − xj(t)), i = 1, . . . , n.

Now, assume that we have ξ̇(t) = −L1ξ(t) for some quantity ξ ∈ Rm,
with m being the number of edges in the network. Rewrite this equation as
an averaging rule (of some sort) in the same way as was done for xi above;
that is, complete the equation

ξ̇i(t) = ?

Exercise 13.4. Same question as 13.3 but with ξ̇(t) = −L2ξ(t).

Exercise 13.5. Same question as 13.3 but with ξ̇(t) = −Lkξ(t) for any
arbitrary k ≥ 1.

Exercise 13.6. One of the main hurdles when using the nerve complex
for practical applications is the difficulty of computing intersections for sets

HIGHER ORDER NETWORKS 361

of arbitrary shape. Fortunately, it is relatively easy to compute such inter-
sections for circular disks. In fact, we do not even need to compute these
intersections since all we need to completely describe the set intersections
corresponding to each simplex in the nerve complex is a certificate about
whether a nonempty intersection exists. Describe how you would go about
producing such certificates.

Exercise 13.7. If the Rips complex is time-varying, it would be interest-
ing to see whether holes in the complex persist over time. Explain what
implications the existence (or lack thereof) of such holes would have for an
evader trying to avoid getting detected, that is, getting too close to any ver-
tex.

Exercise 13.8. What is the connection between L1 and the edge Laplacian
discussed in Chapter 2?

Appendix A

“A man is like a fraction whose numerator is what he is
and whose denominator is what he thinks of himself.
The larger the denominator, the smaller the fraction.”

— Leo Tolstoy

The appendix gathers a number of concepts and constructs that have been
used in the book. These include rudiments of analysis, linear algebra, ran-
dom sequences, control theory, optimization, and games.

A.1 ANALYSIS

Given a “vector” in R, otherwise known as a real number, there is gener-
ally one accepted way to measure its magnitude, namely, its absolute value,
which incidentally also captures the notion of its distance from zero, the
origin of R. Given a vector in Rn for n ≥ 1, or more generally a finite-
dimensional vector space, there are a number of ways to measure its magni-
tude. Let V be a vector space over R. A function

‖ · ‖ : V→ R

is a norm if it is positive (except when its argument is the zero vector),
positively homogeneous (with respect to scalars),

‖α x‖ = |α| ‖x‖, α ∈ R,

and satisfies the triangular inequality

‖x + y‖ ≤ ‖x‖ + ‖y‖.

A norm generalizes the notion of a distance to the origin in R to an arbitrary
vector space. In order to generalize the notion of “angle” to general vector
spaces, we consider a function of the form

〈., .〉 : V× V→ R,

which is called an inner product if it is symmetric, self-positive (〈x, x〉 ≥ 0
for all x and 〈x, x〉 = 0 if and only if x = 0), additive (individually, in each

363

of its arguments), and homogeneous (with respect to scalar multiplication).
Equipped with the notion of inner product, one has

| 〈x, y〉 |2 ≤ 〈x, x〉 〈y, y〉 , (A.1.1)

for all x, y ∈ V (Cauchy-Schwarz). The inner product induces a (canonical)
norm

‖x‖ = 〈x, x〉1/2 ;

examples of such norms include the 2-norm in Rn, which is induced by
〈x, y〉 = xT y, and the Frobenius norm on the space of symmetric matrices,
induced by 〈X,Y 〉 = trace (XY) =

∑
i

∑
j[X]ij [Y]ij = trace (Y X).

The vector 2-norm is the primary norm used in this book.
Norms facilitate the notion of distance and convergence in Rn and other

Euclidean spaces. For example, we say that a sequence of vectors xi, i =
1, 2, . . . , converges to a vector x∗, denoted as xi → x∗, if

lim
i→∞

‖xi − x∗‖ = 0.

Similarly, a sequence of vectors in Rn is said to converge to the set S ⊆ Rn

if

lim
i→∞

inf
y∈S

‖xi − y‖ = 0.

Similarly, the notions of continuity and smoothness for functions can be de-
fined via norms. For example, a function f : Rn → Rm is called Lipschitz
continuous if there exists a constant K > 0 such that

‖f(x1) − f(x2)‖ ≤ K‖x1 − x2‖. (A.1.2)

If (A.1.2) is valid only on a subset of Rn, say S, then we call the function f
locally Lipschitz on S.

A.2 MATRIX THEORY

Matrices represent linear operators on finite-dimensional vector spaces. How-
ever, it is convenient to work with their representation in terms of two-
dimensional arrays of numbers. Thus we write A ∈ Rn×m to signify that
this array has n rows and m columns. Although such an array representa-
tion seems to void profound possibilities for matrices, the contrary seems
to have prevailed. For example, let our underlying vector space be Rn and

364

A ∈ Rn×n, and consider the situation where, for some x ∈ Rn and λ ∈ C,
one has

Ax = λx;

then the vector x is called the eigenvector of A associated with the eigen-
value λ. A matrix is nonsingular if none of its eigenvectors are zero. The
algebraic multiplicity of the eigenvalue of A, λ, is its multiplicity as a root
of the characteristic polynomial

det(λI − A) = 0.

The geometric multiplicity of the eigenvalue λ, on the other hand, is the
number of linearly independent eigenvectors corresponding to it. An eigen-
value is called simple if its algebraic multiplicity is equal to one.

The Kronecker product of two matrices A ∈ Rn×m and B ∈ Rp×q, with
aij = [A]ij and bij = [B]ij , denoted by A ⊗ B, is defined as the np × mq
matrix ⎡⎢⎢⎢⎢⎢⎣

a11B · · · a1mB
a21B · · · a2nB
a31B · · · a3nB

...
...

...
an1B · · · anmB

⎤⎥⎥⎥⎥⎥⎦ .

Among the many algebraic properties of the Kronecker products, we men-
tion the identity

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

where the matrices A, B, C , and D have appropriate dimensions.
If we have that the matrix A ∈ Rn is such that [A]ij = [A]ji, we call A a

real symmetric matrix.

Theorem A.1. A real symmetric matrix A can be factored asQΛQT , where
Λ is the diagonal matrix with the eigenvalues of A on the diagonal, and the
columns of Q are the corresponding orthonormal set of eigenvectors.

In the case that A is symmetric, the eigenvalues of A are real, and one
can order them in such a way that

λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A).

The variational characterization of eigenvalues of a symmetric matrix states
that

λ1 = inf
x �=0

xT Ax

xT x
and λn = sup

x �=0

xT Ax

xT x
.

365

A matrix A is called positive semidefinite if the quadratic form xT Ax ≥ 0
for all x and positive definite if xT Ax > 0 for all x �= 0. The varia-
tional characterization of eigenvalues then implies that a matrix is positive
semidefinite if and only if all its eigenvalues are nonnegative, and positive
definite if they are all positive.

A matrix A ∈ Rn×n is called nonnegative if [A]ij ≥ 0 and positive if
[A]ij > 0 for i, j ∈ {1, 2, . . . , n}. One of the cornerstones of the theory
of nonnegative matrices is the Perron-Frobenius theorem. The main part
of the theory goes as follows. If A is a positive matrix, its spectral radius
ρ(A) is its simple eigenvalue, which in turn corresponds to an eigenvector
with all positive entries. On the other hand, suppose that we associate a
nonnegative matrix A ∈ Rn×n with a digraph D = (V,E) as follows:
V = [n] and (j, i) ∈ E if [A]ij > 0 for i, j ∈ [n]. If this digraph is
strongly connected, then the matrix A has a (unique) eigenvalue equal to
its (positive) spectral radius with the associated eigenvector with positive
entries. A nonnegative matrix such that its rows sum to one is called a
stochastic matrix; if both rows and columns of this matrix sum to one, then
it is called doubly stochastic. A matrix with only one 1 in each column and
row is called a permutation matrix. The following celebrated result is often
referred to as Birkhoff’s theorem.

Theorem A.2. Any doubly stochastic matrix is a convex combination of a
set of permutation matrices.

One of the amazing constructions for matrices is that of determinants,
defined as

det(A) =
∑
σ

∏
[A]1σ(1)[A]2σ(2) · · · [A]nσ(n),

where σ varies over all permutations on the finite set {1, 2, . . . , n}. A few
facts about determinants are as follows.

1. If A,B ∈ Rn×n, then det(AB) = det(A) det(B).

2. (Cauchy-Binet) Let A ∈ Rm×n and B ∈ Rn×m. Then

det(AB) =
∑
S

det(AS) det(BS),

where S runs over m-element subsets of [n]; AS ∈ Rm×m is the
submatrix of A that has as its columns the columns in A indexed by
S; and BS ∈ Rm×m is the submatrix of B that has as its rows the
rows in B indexed by S. It is assumed that m ≤ n, since otherwise,
the determinant is zero.

366

3. When A ∈ Rn×n, det(A) is the product of eigenvalues of A.

We also mention a useful fact on partitioned semidefinite matrices, often
referred to as the Schur complement formula. Consider a partitioned 2n×2n
symmetric matrix

X =
[

X1 X2

XT
2 X3

]
≥ 0.

Then given that X1 is nonsingular, and hence positive definite, one has

S := X3 − XT
2 X−1

1 X3 ≥ 0;

the matrix S is called the Schur complement of X1 in X.

A.3 CONTROL THEORY

Control theory is concerned with effective means of influencing the behavior
of dynamical systems, for example, to make them more efficient or more
stable. A canonical model often used in control theory involves a linear
time-invariant model of the form

ẋ(t) = Ax(t) + Bu(t) and y(t) = Cx(t), (A.3.1)

where x ∈ Rn is the state of the underlying dynamic system, A ∈ Rn×n is
the system matrix, B ∈ Rn×m is the input matrix, C ∈ Rp×n is the output
matrix, y(t) ∈ Rp is the output of the system, and u(t) ∈ Rm is the control
signal to be designed. If the signal u(t), which plays the supporting role
in steering the main character of this scenario, the state x, in some desired
way, can be considered independent of the state x, then the control is called
open loop. If u(t) = f(x(t)) for some function f , then the control is called
closed loop.

A state z ∈ Rn is called reachable from a state x = x(0) in time T if
there exists an open or closed loop control such that x(T) = z when starting
from x(0) = x. If an arbitrary state z is reachable from an arbitrary state
x in an arbitrary interval [0, T], with T > 0, then the system is called con-
trollable. A dual notion of controllability is that of observability: a system
is observable if, knowing the control input and the observation y on a given
time interval, one can uniquely determine the initial condition. Although
controllability by definition involves guaranteeing the existence of a set of
infinite-dimensional objects (the control input) that corresponds to another
set of infinite-dimensional objects (the set of initial and target states), it can
be verified by checking the rank of the controllability matrix

[A |B] = [B AB · · · An−1B] ∈ Rn×nm;

367

in particular, the system (A.3.1) specified by the pair (A,B) is controllable
if and only if rank [A |B] = n. Alternatively, the system (A.3.1) is con-
trollable if and only if there does not exist a left eigenvector of A that is
orthogonal to all columns of B. System theory duality can then be used to
derive a similar matrix theoretic characterization for the observability of the
system. In fact, this system is observable if and only if rank [AT |CT] = n,
or, alternatively, if and only if none of the eigenvectors of A are orthogonal
to all rows of the observation matrix C .

Assume now that A ∈ Rn, B ∈ Rn×m, and rank [A |B] = p < n. Then
there exists a nonsingular matrix P such that

PAP−1 =
[

A11 A12

0 A22

]
and PB =

[
B1

0

]
,

where A11 ∈ Rp×p, A22 ∈ R(n−p)×(n−p), and B1 ∈ Rp×m, such that the
pair (A11, B1) is controllable. This a partial Kalman decomposition.

A.3.1 Lyapunov Theory

Consider the dynamics

ẋ(t) = f(x(t)), (A.3.2)

where f : Rn → Rn is locally Lipschitz continuous and satisfies, without
loss of generality, f(0) = 0.

Definition A.3. Various forms of stability at the origin are as follows.

1. Stability: For all ε > 0, there exists δ > 0 such that ‖x(0)‖ ≤ δ
implies that ‖x(t)‖ ≤ ε, for all t ≥ 0.

2. Asymptotic Stability: The origin is stable and there exists δ > 0
such that ‖x(0)‖ ≤ δ implies that x(t) → 0 as t → ∞.

3. Global Asymptotic Stability: The origin is asymptotically stable
when (A.3.2) is arbitrary initialized.

4. Exponential Stability: There exist δ > 0, c > 0, λ > 0 such that
‖x(0)‖ ≤ δ implies that ‖x(t)‖ ≤ c‖x(0)‖e−λt, for all t ≥ 0.

The main complication in the definition of stability is that it involves
quantification over parameters that can assume infinitely many values, for
example, all initial conditions, all t ≥ 0, and so on. However, since stability
is an “asymptotic” notion, there is a clever way to establish it by identifying

368

a certificate for it. Let C1 be the class of continuously differentiable func-
tions. Moreover, we call V : Rn → R positive definite if V (x) > 0 for
all x �= 0 and V (0) = 0 and positive semidefinite if V (x) ≥ 0 for all x. If
V (x) → ∞ when ‖x‖ → ∞, then V is called radially unbounded.

1. A Lyapunov function for (A.3.2), with respect to the origin, is a
real-valued, positive definite C1 function V : Rn → R, such that
V̇ (t) < 0 for all x �= 0 along the trajectories of (A.3.2).

2. A weak Lyapunov function for (A.3.2), with respect to the origin, is
a real-valued, positive definite C1 function V : Rn → R such that
V̇ (t) ≤ 0 for all x along the trajectories of (A.3.2).

Lyapunov functions serve as certificates for examining the stability prop-
erties of (A.3.2). In particular, one has the following correspondences (all
with respect to the origin).

1. If (A.3.2) admits a weak Lyapunov function, it implies the stability of
the origin.

2. If (A.3.2) admits a Lyapunov function, it implies the asymptotic sta-
bility of the origin.

3. If (A.3.2) admits a radially unbounded Lyapunov function, it implies
global asymptotic stability of the origin.

4. If (A.3.2) admits a Lyapunov function and V̇ (t) ≤ −αV along the
trajectory of (A.3.2) for some α > 0, it implies the exponential sta-
bility of the origin.

Extensions of the notion of stability to the origin (or any other point in Rn)
can be realized for sets, which in turn requires an appropriate notion of
certificate for examining the trajectories of (A.3.2).

Definition A.4. A set A is an invariant set of (A.3.2) if, whenever x(̄t) ∈ A
for some t̄, x(t) ∈ A for all t ≥ t̄.

Example A.5. Let[
ẋ1

ẋ2

]
=
[

x2 + x1(1 − x2
1 − x2

2)
−x1 + x2(1 − x2

1 − x2
2)

]
.

Then the corresponding invariant sets are (0, 0) and the unit circle: if
x1(t̄)2 + x2(t̄)2 = 1 for some t̄, then x1(t)2 + x2(t)2 = 1 for all t ≥ t̄.

The following extension of the notion of “certificate” for stability is re-
ferred to as LaSalle’s invariance principle.

369

Theorem A.6. Let V : Rn → R be a weak Lyapunov function for (A.3.2).
LetM be the largest invariant set (with respect to set inclusion) contained
in

{x ∈ Rn | V̇ (x) = 0}.

Then every solution x(t) of (A.3.2) that remains bounded is such that

inf
y∈M

‖x(t) − y‖ → 0 as t → ∞.

We note that when V is a radially unbounded weak Lyapunov function
for (A.3.2), all solutions of (A.3.2) remain bounded.

In discrete time, we have the dynamics

x(k + 1) = f(x(k)),

with equilibrium points as the fixed points of f , that is, xe = f(xe). We
assume that 0 is such an equilibrium point, and the discussion of Lyapunov
stability will (without loss of generality) be confined to the issue of stability
to the origin. The discrete time versions of Lyapunov-based certificates are
almost identical to the continuous setting. We again let V (x) > 0 (possi-
bly radially unbounded) for all x �= 0 and, instead of derivatives, we take
differences. In other words, if

V (x(k + 1)) − V (x(k)) < 0 for all x(k) �= 0,

along the bounded trajectories of the system, then the origin is (globally, if
V is radially unbounded) asymptotically stable.

The discrete time version of LaSalle’s invariance principle is analogous
to the continuous time case in that, if V (x(k + 1)) − V (x(k)) ≤ 0 along
trajectories then x will converge to the largest invariant set M contained in
{x | V (f(x)) − V (x) = 0}.

For switched systems, one has to be a bit more careful. In fact, given a
collection of discrete modes S = {1, . . . , s}, we define a switched system
as

ẋ(t) = fσ(t)x(t),

where σ : [0,∞) → S is the switch signal that dictates what mode is active
at any given time t.

To establish whether the origin is (globally) asymptotically stable for such
a system, one first has to specify what class of switch signals one is consid-
ering.

370

Definition A.7. A switched linear system is universally (globally) asymptot-
ically stable if it is (globally) asymptotically stable for every switch signal.
It is existentially (globally) asymptotically stable if there exists at least one
switch signal that renders the system (globally) asymptotically stable.

The following two facts follow directly from this definition.

1. If mode k is (globally) asymptotically stable, then the switched sys-
tem is existentially (globally) asymptotically stable. (Just let σ(t) = k
for all t and asymptotic stability is achieved.)

2. If any of the subsystems (say system k) is unstable, then the switched
system is not universally (globally) asymptotically stable. (Again, let
σ(t) = k for all t and the system goes unstable.)

If the switch signal is not a priori known, one is typically interested in the
universal property. The following theorem characterizes this.

Theorem A.8. The switched system

ẋ(t) = fσ(t)x(t), σ(t) ∈ S

is universally (globally) asymptotically stable if there exists a common (ra-
dially unbounded) Lyapunov function V , that is, one such that for all x �= 0,
V (x) > 0 and

d

dt
V (x(t)) =

∂V (x(t))T

∂x
fi(x(t)) < 0 for all x �= 0,

for all i ∈ S.

Theorem A.9. Let V be a common weak Lyapunov function for the different
subsystems and letMi be the largest invariant set (under mode i) contained
in {

x ∈ Rn | ∂V (x)T

∂x
fi(x) = 0

}
.

IfMi = Mj for all i, j ∈ S, x will asymptotically converge to this set.

A.3.2 Passivity

In Chapter 4 we have employed constructs from passivity theory and non-
linear systems for analyzing nonlinear agreement protocols.

371

Definition A.10. The set L2 consists of measurable vector-valued functions
f : R+ → Rn such that

‖f‖L2 =
∫ ∞

0
‖f(t)‖2 dt < ∞.

In fact, the function space L2 can be considered a Hilbert space with the
inner product between two functions f, g ∈ L2 defined as

〈f, g〉 =
∫ ∞

0
f(t)T g(t) dt. (A.3.3)

Given the vector-valued function f(t), one can also consider its truncated
version,

fT (t) =
{

f(t) if t ≤ T,
0 otherwise.

a construction that has become quite important in stability analysis of non-
linear and uncertain feedback systems. The space L2e is the space of mea-
surable vector-valued functions f(t) such that for all T ≥ 0, fT (·) ∈ L2.

Consider now the nonlinear system

ẋ(t) = f(t, x(t), u(t)), y(t) = g(t, x(t), u(t)) (A.3.4)

where it is assumed that f(t, 0, 0) = 0 and g(t, 0, 0) = 0 for all t ≥ 0.

Definition A.11. The system (A.3.4) is passive if, for all u ∈ L2e, y ∈ L2e,
there exists a constant β such that

〈u, y〉 ≥ β.

The system is strictly input passive if, in addition, there exist β and δ > 0,
such that, for all u,

〈u, y〉 ≥ δ‖u‖2 + β,

and strictly output passive if there exist β and ε > 0, such that, for all u,

〈u, y〉 ≥ ε‖y‖2 + β.

Example A.12. Consider the single integrator with an output, x(t), as-
sumed to be in L2e. Then, for any T ≥ 0,

〈ẋ, x〉=
∫ T

0
ẋ(t)T x(t)dt =

1
2

∫ T

0

[
d

dt
‖x(t)‖2

]
dt

=
1
2
(‖x(T)‖2 − ‖x(0)‖2) ≥ −1

2
‖x(0)‖2;

hence an integrator is passive.

372

The following characterization of passivity essentially ties it in with the
general class of dissipative systems.

Proposition A.13. Consider a continuously differentiable function V (t) ≥
0 and assume that the function d(t) is such that for all T ≥ 0,∫ T

0
d(t)dt ≥ 0.

Then, if

V̇ (t) ≤ u(t)T y(t) − d(t), (A.3.5)

for all t ≥ 0 and all inputs u, the system (A.3.4) is passive.

A.4 PROBABILITY

Elements of probability theory were mainly used in Chapter 5, where we
examined networks and protocols with random constructs. By a random
variable X we mean a variable that can assume values in R according to
some probability density µ(x), where

Pr{X ∈ [a, b]} =
∫ b

a
µ(x)dx.

The expected value of this random variable is then

E{X} =
∫ ∞

−∞
xµ(x)dx

or, in the case where x only assumes discrete values,

E{X} =
∑

x

xPr{X = x}.

The variance of the random variable X is

var{X} = E{ (x − E{x})2 };

it captures how much the random variable is expected to deviate from its
expected value. Capturing this deviation, or more generally bounding the
probability of certain events, is in fact the subject of a number of famous
inequalities in probability. These include the Markov inequality

Pr{X ≥ α} ≤ E{X}
α

,

373

where X is assumed to be a nonnegative random variable, and the Cheby-
shev inequality

Pr{|X −E{X}| ≥ σα} ≤ 1
α2

,

where σ is the finite standard deviation of X, that is, σ2 = var{X}.
Another powerful bound used in Chapter 5 is the Chernoff bound, stat-

ing that if X is the sum of independent variables, each one with a fixed
probability of being a one or not, then

Pr{X < (1 − δ)E{X}} <

(
e−δ

(1 − δ)1−δ

)E{X}

and

Pr{X > (1 + δ)E{X}} <

(
eδ

(1 + δ)1+δ

)E{X}
.

Conditional probabilities and expectations allow one to reason about the
relationship between multiple random variables. In this direction, consider
two random variables X and Y . Then the conditional expectation of X with
respect to Y is defined as

E{X |Y = y} =
∫ ∞

−∞
xµ(x | y)dx,

where µ(x | y) is the conditional density function

µ(x | y) =
µ(x, y)
µ(y)

,

with µ(x, y) being the joint density function of the two random variables
X and Y . The latter density function, in turn, parameterizes the probability
that two events regarding the two random variables occur simultaneously.
For example,

Pr{X ∈ [a, b], Y ∈ [c, d]} =
∫ b

a

∫ d

c
µ(x, y)dy dx.

In Chapter 5 we also extensively used the notion of a random sequence for
analyzing random networks and noisy protocols over networks. A random
sequence {V (k)}k≥0 converges to a random variable V ∗ with probability
one (w.p.1), if, for every ε > 0,

Pr { sup
k≥N

‖V (k) − V ∗‖ ≥ ε } → 0 as N → ∞.

374

On the other hand, {V (k)}k≥0 converges in the mean if the deterministic
sequence {E {V (k)} }k≥0 converges to (a constant number) V∗. Moreover,
a random sequence {x(k)} in Rn converges to x∗ in probability if, for each
ε > 0, Pr { ‖x(k) − x∗‖ ≥ ε } → 0 as k → ∞.

Suppose now that the sequence of nonnegative random variables {V (k)}
is such that

E {V (k + 1) |V (0), . . . , V (k) } ≤ E {V (k) } and E {V (0) } < ∞;

such a sequence is called a nonnegative supermartingale. The celebrated
supermartingale convergence theorem then states that when {V (k)}k≥0 is a
nonnegative supermartingale, there exists a random variable V∗ ≥ 0 such
that V (k) → V ∗ w.p.1, with the following as a consequence.

Lemma A.14. Consider the sequence of nonnegative random variables
{V (k)}k≥0 with E {V (0)} < ∞. Let

E {V (k + 1) | V (0), . . . , V (k)} ≤ [1 − c1(k)]V (k) + c2(k), (A.4.1)

with c1(k) and c2(k) satisfying

0 ≤ c1(k) ≤ 1, 0 ≤ c2(k),
∞∑

k=0

c2(k) < ∞,

∞∑
k=0

c1(k) = ∞, lim
k→∞

c2(k)
c1(k)

= 0. (A.4.2)

Then V (k) → 0 w.p.1.

We conclude this section by pointing out that, for discrete-time stochastic
systems, a Lyapunov-based framework, analogous to that in §A.3, can be
developed for proving convergence properties of random sequences. For
example, suppose that a positive definite function V is a supermartingale
along the sequence generated by the dynamic system. In other words, for
some positive semidefinite matrix C , we have

E{V (z(k + 1)) − V (z(k)) | z(k)} = −z(k)Cz(k).

Then z(k) converges to the set

M = {z|zT Cz = 0}

w.p.1. Such a theorem, among its many variants, is then referred to as the
stochastic version of LaSalle’s invariance principle.

375

A.5 OPTIMIZATION AND GAMES

Given a set Γ ⊆ R, the infimum of Γ (inf Γ) is the greatest lower bound
on Γ; the least upper bound on Γ is the supremum (supΓ). To make sure
that inf and sup always exist, we append −∞ and +∞ to R; we write
R∪ {+∞} if necessary. One has, by convention, sup ∅ = −∞ and inf ∅ =
+∞. If, for a given optimization problem, it is known that inf (respectively,
sup) exists, then it is more pleasing to write min (respectively, max). Given
a subset S of a vector space V and a function f : V → R, an optimization
problem is the problem of the forms

inf
x∈S

f(x) or sup
x∈S

f(x).

Optimization problems are in general difficult. Subclasses that make an
optimizer happy include linear programming,

min
Ax=b, x≥0

cT x, where A ∈ Rm×n, b ∈ Rm, and c ∈ Rn,

and quadratic programming,

min
Ax=b, x≥0

xT Qx, where Q ∈ Rn×n, b ∈ Rm, and c ∈ Rn,

and Q is positive semidefinite. More generally, easily manageable instances
of optimization problems include those that are convex: those whose objec-
tives are convex functions and their constraint sets are convex sets. A subset
C ∈ V is called convex if for all x, y ∈ C and α ∈ (0, 1), αx+(1−α)y ∈ C;
for a convex set C , the function f : C → R is convex if, for all x, y ∈ C
and all λ ∈ [0, 1],

f(λx + (1 − λ) y) ≤ λf(x) + (1 − λ) f(y). (A.5.1)

In the case when the optimization is unconstrained, for example, when f :
Rn → R and the constraints set S is the entire Rn, assuming that f is
convex and differentiable, the minimizer can be found by solving ∇f(x) =
0. In general, the set {x |∇f(x) = 0} is called the stationary points of
f . This set contains the minimizers and maximizers of f , as well as other
points called the saddle points of f .

A recent addition to the list of optimization problems that can be solved
with reasonable efficiency is semidefinite programming (SDP). SDPs have
found many applications in systems and control theory as well as in combi-
natorics, probability, and statistics.

Given Ai ∈ Sn and c ∈ Rn, a SDP is defined as

min
x

cT x

s.t. x1A1 + · · · + xnAn > 0,

376

where the expression B > A for two symmetric matrices implies that the
matrix difference B − A is positive definite; similarly, B ≥ A captures the
semidefiniteness of B − A. An equivalent form for an SDP is

max
Y

traceBY,

s.t. 〈Ai, Y 〉 = ci, i = 1, . . . ,m,

Y ≥ 0,

where B ∈ Sn.
Optimization is closely related to solving systems of inequalities. For

example, the linear matrix inequality (LMI) is the problem of finding the set
of real numbers x1, · · · , xn such that, for a given set of symmetric matrices
Ao, A1, . . . , An, one has

Ao +
n∑

i=1

xiAi ≥ 0,

that is, that the linear combination of these symmetric matrices should be
positive semidefinite. LMIs have in fact been used for finding sufficient
conditions for the feasibility of nonconvex sets. For example, suppose that it
is desired to find a feasible point in a set defined by the quadratic inequalities

xT Q1x ≥ 0, xT Q2x < 0,

for x ∈ Rn and Q1, Q2 ∈ Sn. Then one can check to see if, instead,
it is valid that for all vectors x that make xTQ1x ≥ 0, it is the case that
xT Q2x ≥0. This can be accomplished by what is known as the S-procedure,
which involves checking for the existence of a nonnegative scalar τ such that

Q2 ≥ τQ1,

which is an LMI. An extension of this idea is as follows. In order to show
whether it is true that, for a given set of symmetric matrices,

Qo, Q1, Q2, . . . , Qn,

the set of inequalities

xT Q1x ≥ 0, xT Q2x ≥ 0, . . . , xT Qnx ≥ 0

would imply that xT Qox ≥ 0, it suffices to show the existence of nonnega-
tive scalars τ1, τ2, . . . , τn, such that

Qo ≥ τ1Q1 + τ2Q2 + · · · + τnQn,

which can be cast as an LMI as well.

377

A conceptually pleasing generalization of optimization problems is in
terms of games. Whereas in an optimization model one is interested in
finding the best decision x, subject to constraints, that minimizes or maxi-
mizes a given objective f , in a game problem the objective is a function of
arguments that can be chosen independently by multiple decision makers,
possibly with conflicting individual objectives.

Games come in a variety of flavors: static, dynamic, 2-player, n-player
with n ≥ 3, nonzero sum, zero sum, repeated, and evolutionary, to name
a few. The difference is often reflected in the assumptions on the nature of
the systems that the players have vested interested in. To motivate some of
the key concepts, including the notion of Nash equilibria, we resort to the
classical game called the prisoner’s dilemma.

The setup of the prisoner’s dilemma is as follows. Consider two prisoners
who under individual interrogation about a crime that they have committed
together can either keep quiet or confess. We refer to these prisoners as
“agents” or “players.” In the case that these players keep quiet, we say that
they are collaborating with each other. The cost structure for the game is
as follows: (1) if the players both keep quiet, then they each get two years
in prison, (2) if the players both confess, then they each get four years in
prison, (3) if the first player confesses but the second player keeps quiet,
then the first player is free to go and the second player gets five years in
prison, and finally, (4) if the second player confesses but the first player
keeps quiet, then the second player is free to go and the first player gets
five years in prison. We adopt the convention of denoting the result of the
decision of agent i chosen from the set Σi by πi, as the prisoners adopt
their respective strategies of keeping quite or to confess. In fact, we can
summarize this game in a table shown below, depicting the decisions of the
prisoners and their “payoff,” shown inside each box.

Prisoner 2

Prisoner 1

Quiet Confess

(r, r) (t, s)

(s, t) (p, p)Confess

Quiet

For this example, we have r = −2, s = 0, t = −5, p = −4, and
π1(confess, quiet) = 0. In this game, there is a notion of utility or payoff
and strategy. A Nash equilibrium is a pair of strategies (σ∗1 , σ

∗
2) such that

π1(σ∗
1 , σ

∗
2) ≥ π1(σ1, σ

∗
2) for all σ1 ∈ Σ1,

π2(σ∗
1 , σ

∗
2) ≥ π2(σ∗

1 , σ2) for all σ2 ∈ Σ2.

378

Thus, at the Nash equilibrium, each player cannot benefit from unilaterally
changing its strategy. Hence (confess, confess) in the example above is a
Nash equilibrium, and in fact, it is exactly the source of the dilemma.

Bibliography

[1] http://www.esa.int

[2] http://fewcal.kub.nl/sturm/software/sedumi.html

[3] http://planetquest.jpl.nasa.gov/TPF/

[4] R. Agaev and P. Chebotarev. On the spectra of nonsymmetric Lapla-
cian matrices. Linear Algebra and its Applications, 399: 157–168,
2005.

[5] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, 1993.

[6] M. A. Aizerman, L. A. Gusev, S. V. Petrov, I. M. Smirnova, and L.
A. Tenenbaum. Dynamic approach to analysis of structures described
by graphs (foundations of graph-dynamics). In Topics in the General
Theory of Structures, edited by E. R. Caianiello and M. A. Aizerman.
Reidel, 1987.

[7] P. Alriksson and A. Rantzer. Distributed Kalman filtering using
weighted averaging, Proceedings of the 17th International Sympo-
sium on Mathematical Theory of Networks and Systems, July 2006.

[8] B. D. O. Anderson and J. B. Moore. Optimal Filtering. Dover, 2005.

[9] H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed mem-
oryless point convergence algorithm for mobile robots with limited
visibility. IEEE Transactions on Robotics and Automation, 15 (5):
818–828, 1999.

[10] M. Arcak. Passivity as a design tool for group coordination. IEEE
Transactions on Automatic Control, 52 (8): 1380–1390, 2007.

[11] M. Armstrong. Basic Topology. Springer, 1997.

[12] L. Arnold. On the asymptotic distribution of the eigenvalues of ran-
dom matrices. Journal of Mathematical Analysis and Applications,
20: 262–268, 1967.

380 BIBLIOGRAPHY

[13] R. J. Aumann. Agreeing to disagree. Annals of Statistics, 4 (6):
1236–1239, 1976.

[14] T. Balch and R. C. Arkin. Behavior-based formation control for
multi-robot teams. IEEE Transactions on Robotics and Automation,
14 (6): 926–939, 1998.

[15] B. Bamieh, F. Paganini, and M. Dahleh. Distributed control of
spatially-invariant systems. IEEE Transactions on Automatic Con-
trol, 47 (7): 1091–1107, 2002.

[16] A-L. Barabási and A. Réka. Emergence of scaling in random net-
works. Science, 286: 509–512, 1999.

[17] R. W. Beard, J. R. Lawton, and F. Y. Hadaegh. A coordination ar-
chitecture for spacecraft formation control. IEEE Transactions on
Control Systems Technology, 9 (6): 777–790, 2001.

[18] A. Bensoussan and J. L. Menaldi. Difference equations on weighted
graphs. Journal of Convex Analysis, 12 (1): 13–44, 2005.

[19] C. Berge. Hypergraphs. North-Holland, 1989.

[20] A. Berman and R. Plemmons. Nonnegative Matrices in the Mathe-
matical Sciences. SIAM, 1994.

[21] A. Berman and X-D. Zhang. Lower bounds for the eigenvalues of
Laplacian matrices. Linear Algebra and its Applications, 316: 13–
20, 2000.

[22] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Compu-
tation. Prentice-Hall, 1989.

[23] N. L. Biggs, E. K. Lloyd, and R. J. Wilson. Graph Theory: 1736–
1936. Oxford University Press, 1998.

[24] N. Biggs. Algebraic Graph Theory. Cambridge University Press,
1993.

[25] V. Blondel, J. M. Hendrickx, and J. Tsitsiklis. On Krause’s
consensus formation model with state-dependent connectivity.
arXiv:0807.2028v1, 2008.

[26] B. Bollobás. Combinatorics: Set Systems, Hypergraphs, Families
of Vectors, and Combinatorial Probability. Cambridge University
Press, 1986.

BIBLIOGRAPHY 381

[27] B. Bollobás. Random Graphs. Cambridge University Press, 2001.

[28] B. Bollobás. Modern Graph Theory. Springer, 2002.

[29] B. Bollobás. Extremal Graph Theory. Dover, 2004.

[30] J. A. Bondy and U.S.R. Murty. Graph Theory. Springer, 2008.

[31] S. Björkenstam, M. Ji, M. Egerstedt, and C. Martin. Leader-Based
Multi-Agent Coordination Through Hybrid Optimal Control. Aller-
ton Conference on Communication, Control, and Computing, 2006.

[32] M. Born and E. Wolf. Principles of Optics (sixth edition). Cambridge
University Press, 1997.

[33] S. P. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear
Matrix Inequalities in System and Control Theory. SIAM, 1994.

[34] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip
algorithms. IEEE Transactions on Information Theory, 52 (6): 2508–
2530, 2006.

[35] B. Brogliato, R. Lozano, B. Maschke, and O. Egeland. Dissipative
Systems Analysis and Control: Theory and Applications. Springer,
2006.

[36] M. E. Broucke. Disjoint path algorithms for planar reconfiguration of
identical vehicles. Proceedings of the American Control Conference,
June 2003.

[37] M. E. Broucke. Reconfiguration of identical vehicles in 3D. Proceed-
ings of the IEEE Conference on Decision and Control, December
2003.

[38] R. Bru, L. Elsner, and M. Neumann. Models of parallel chaotic iter-
ation methods. Linear Algebra and its Applications, 103: 175–192,
1988.

[39] L. Bruneau, A. Joye, and M. Merkli, Infinite products of random
matrices and repeated interaction dynamics. arXiv:math/0703675v2,
Feburary 2008.

[40] A. E. Bryson, Jr. and Y-C. Ho. Applied Optimal Control. Taylor and
Francis, 1975.

382 BIBLIOGRAPHY

[41] F. Bullo, J. Cortés, and S. Martı́nez. Distributed Control of Robotic
Networks: A Mathematical Approach to Motion Coordination Algo-
rithms. Princeton University Press, 2009.

[42] R. E. Burkard. Selected topics in assignment problems. Discrete Ap-
plied Mathematics, 123: 257–302, 2002.

[43] R. Carli, F. Fagnani, A. Speranzon, and S. Zampieri. Communication
constraints in coordinated consensus problem. Proceedings of the
American Control Conference, June 2006.

[44] S. Chatterjee and E. Seneta. Towards consensus: some convergence
theorems on repeated averaging. Journal of Applied Probability, 14:
89–97, 1977.

[45] D. Chazan and W. L. Miranker. Chaotic relaxation. Linear Algebra
and its Applications, 2: 199–222, 1969.

[46] B-D. Chen and S. Lall. Dissipation inequalities for distributed sys-
tems on graphs. Proceedings of the IEEE Conference on Decision
and Control, December 2003.

[47] F. Chung, L. Lu, and V. Vu. The spectra of random graphs with given
expected degrees. Proceedings of the National Academy of Sciences,
100 (11): 6313–6318, 2003.

[48] F. Chung and L. Lu. Complex Graphs and Networks. American Math-
ematical Society, 2006.

[49] F. R. K. Chung and K. Oden. Weighted graph Laplacians and isoperi-
metric inequalities. Pacific Journal of Mathematics, 192 (2): 257–
273, 2000.

[50] F. R. K. Chung. Spectral Graph Theory. American Mathematical
Society, 1997.

[51] R. Cogburn. On products of random stochastic matrices. Ran-
dom Matrices and Their Applications: Proceedings of the AMS-IMS-
SIAM Joint Summer Research Conference. J. E. Cohen, H. Kesten, C.
M. Newman (editors). American Mathematical Society, 1984.

[52] R. Conner, M. Heithaus, and L. Barre. Complex social structure, al-
liance stability and mating access in a bottlenose dolphin “super al-
liance.” Proceedings of the National Academy of Sciences: 987–990,
1992.

BIBLIOGRAPHY 383

[53] J. Cortés. Distributed algorithms for reaching consensus on general
functions. Automatica, 44 (3): 726–737, 2008.

[54] J. Cortés and F. Bullo. Coordination and geometric optimization via
distributed dynamical systems. SIAM Journal of Control and Opti-
mization, 45 (5): 1543–1574, 2005.

[55] J. Cortés, S. Martı́nez, and F. Bullo. Robust rendezvous for mo-
bile autonomous agents via proximity graphs in arbitrary dimensions.
IEEE Transactions on Automatic Control, 51 (8): 1289–1298, 2006.

[56] I. D. Couzin, Behavioral ecology: social organization in fission-
fusion societies. Current Biology, 16: 169–171, 2006.

[57] I. D. Couzin and N. R. Franks, Self-organized lane formation and
optimized traffic flow in army ants. Proceedings of the Royal Society
of London, 270: 139-146, 2003.

[58] H. S. M. Coxeter and S. L. Greitzer. Geometry Revisited. Mathemat-
ical Association of America, 1967.

[59] J. L. Crassidis and J. L. Junkins. Optimal Estimation of Dynamic
Systems. Chapman and Hall/CRC, 2004.

[60] C. H. Caicedo-Nunez and M. Zefran. Rendezvous under noisy mea-
surements. Proceedings of the IEEE Conference on Decision and
Control, December 2008.

[61] R. D’Andrea and G. E. Dullerud. Distributed control design for spa-
tially interconnected systems. IEEE Transactions on Automatic Con-
trol, 48 (9): 1478–1495, 2003.

[62] A. Das and M. Mesbahi. Distributed parameter estimation over sen-
sor networks. IEEE Transactions on Aerospace Systems and Elec-
tronics, 45 (4): 1293–1306, 2009.

[63] P. Dayawansa and C. F. Martin. A converse Lyapunov theorem for a
class of dynamical systems which undergo switching, IEEE Transac-
tions on Automatic Control, 44 (4): 751–760, 1999.

[64] M. H. DeGroot. Reaching a consensus. Journal of the American
Statistical Association, 69: 118–121, 1974.

[65] J. Desai, J. Ostrowski, and V. Kumar. Modeling and control of forma-
tions of nonholonomic mobile robots. IEEE Transactions on Robotics
and Automation, (17) 6: 905–908, 2001.

384 BIBLIOGRAPHY

[66] J. Desai, J. Ostrowski, and V. Kumar. Controlling formations of mul-
tiple mobile robots. Proceedings of IEEE International Conference
Robotics and Automation, May 1998.

[67] M. Desbrun, A. Hirani, and J. Marsden. Discrete exterior calculus for
variational problems in computer graphics and vision. Proceedings of
the IEEE Conference on Decision and Control, December 2003.

[68] V. de Silva, R. Ghrist, and A. Muhammad. Blind Swarms for Cover-
age in 2-D. Robotics: Science and Systems, MIT Press, 2005.

[69] V. de Silva and R. Ghrist. Coordinate-free coverage in sensor net-
works with controlled boundaries via homology. International Jour-
nal of Robotics Research, 25 (12): 1205–1222, 2006.

[70] V. de Silva and R. Ghrist. Coverage in sensor networks via persistent
homology. Algebraic and Geometric Topology, 7: 339-358, 2007.

[71] R. Diestel. Graph Theory. Springer, 2000.

[72] W. B. Dunbar and R. M. Murray. Receding horizon control of multi-
vehicle formations: a distributed implementation. Proceedings of the
IEEE Conference on Decision and Control, December 2004.

[73] M. Egerstedt, X. Hu, and A. Stotsky. Control of mobile platforms
using a virtual vehicle approach. IEEE Transactions on Automatic
Control, 46 (11): 1777–1782, 2001.

[74] M. Egerstedt and X. Hu. Formation constrained multi-agent control.
IEEE Transactions on Robotics and Automation, (17) 6: 947–951,
2001.

[75] L. Elsner, I. Koltracht, and M. Neumann. Convergence of sequential
and asynchronous nonlinear paracontractions. Numerische Mathe-
matik, 62 (1): 305–319, 1992.

[76] P. Erdős and A. Rényi. On the evolution of random graphs. Pub-
lication of the Mathematical Institute of the Hungarian Academy of
Sciences, 5: 17–61, 1960.

[77] T. Eren, P.N. Belhumeur, B. D. O. Anderson, and A.S. Morse. A
framework for maintaining formations based on rigidity. Proceedings
of the 15th IFAC World Congress, 2002.

BIBLIOGRAPHY 385

[78] T. Eren, W. Whiteley, B. D. O. Anderson, A. S. Morse, and P. N.
Belhumeur. Information structures to secure control of rigid forma-
tions with leader-follower architecture. Proceedings of the American
Control Conference, June 2005.

[79] L. C. Evans. Applied Optimal Control. American Mathematical So-
ciety, 1998.

[80] A. Fabrikant, A. Luthra, E. Maneva, C. H. Papadimitriou, and S.
Shenker. On a network creation game. ACM Symposium on Prin-
ciples of Distributed Computing, 2003.

[81] F. Fagnani and S. Zampieri. Randomized consensus algorithms over
large scale networks. IEEE Journal on Selected Areas in Communi-
cations, 26 (4): 634–649, 2008.

[82] A. Fagiolini, E. M. Visibelli, and A. Bicchi. Logical consensus for
distributed network agreement. Proceedings of the IEEE Conference
on Decision and Control, December 2008.

[83] C. Fall, E. Marland, J. Wagner, and J. Tyson (Editors). Computational
Cell Biology. Springer, 2005.

[84] S. Fallat and S. Kirkland. Extremizing algebraic connectivity sub-
ject to graph theoretic constraints. The Electronic Journal of Linear
Algebra, 3 (1): 48–74, 1998.

[85] A. Fax and R. M. Murray. Graph Laplacian and stabilization of vehi-
cle formations. Proceedings of the 15th IFAC World Congress, 2002.

[86] A. Fax and R. M. Murray. Information flow and cooperative control
of vehicle formations. IEEE Transactions on Automatic Control, 49
(9): 1465–1476, 2004.

[87] M. Feinberg. Lectures on Chemical Reaction Networks. Notes of lec-
tures given at the Mathematics Research Centre. University of Wis-
consin, 1979.

[88] G. Ferrari-Trecate, A. Buffa, and M. Gati. Analysis of coordination in
multi-agent systems through partial difference equations. Part I: The
Laplacian control. Proceedings of the 16th IFAC World Congress,
2005.

[89] G. Ferrari-Trecate, M. Egerstedt, A. Buffa, and M. Ji. Laplacian
sheep: a hybrid, stop-go policy for leader-based containment control.
Hybrid Systems: Computation and Control, Springer, 2006.

386 BIBLIOGRAPHY

[90] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-
matical Journal, 23 (98): 298–305, 1973.

[91] M. Franceschelli, M. Egerstedt, A. Giua, and C. Mahulea. Con-
strained invariant motions for networked multi-agent systems. Pro-
ceedings of the American Control Conference, June 2009.

[92] D. Freedman. Markov Chains. Springer, 1983.

[93] R. A. Freeman, P. Yang, and K. M. Lynch. Stability and convergence
properties of dynamic average consensus estimators, Proceedings of
the IEEE Conference on Decision and Control, December 2006.

[94] Z. Füredi and J. Komlós. The eigenvalues of random symmetric ma-
trices. Combinatorica, 1 (3): 233–241, 1981.

[95] V. Gazi and K. M. Passino. A class of attraction/repulsion functions
for stable swarm aggregations. International Journal of Control, 77:
1567–1579, 2004.

[96] A. Gelb (Editor). Applied Optimal Estimation. MIT Press, 1974.

[97] A. Ghosh and S. Boyd. Growing well-connected graphs. Proceedings
of the IEEE Conference on Decision and Control, December 2006.

[98] A. M. Gibbons. Topological Graph Theory. Cambridge University
Press, 1985.

[99] E. N. Gilbert. Random graphs. Annals of Mathematical Statistics,
30: 1141–1144, 1959.

[100] H. Gluck. Almost all simply connected closed surfaces are rigid.
Geometric Topology. Lecture Notes in Mathematics, 438: 225–239,
Springer, 1975.

[101] C. Godsil and G. Royle. Algebraic Graph Theory. Springer, 2001.

[102] R. L. Graham, M. Grötschel, and L. Lovász. Handbook of Combina-
torics. MIT Press/North-Holland, 1995.

[103] J. L. Gross and T. W. Tucker. Topological Graph Theory. Dover,
2001.

[104] J. Gower. Properties of Euclidean and non-Euclidean distance matri-
ces. Linear Algebra and its Applications, (67) 1: 81–97, 1985.

BIBLIOGRAPHY 387

[105] S. Goyal. Connections: An Introduction to the Economics of Net-
works. Princeton University Press, 2007.

[106] M. Grant and S. Boyd. CVX:Matlab Software for Disciplined Convex
Programming. www.stanford.edu/ boyd/cvx/

[107] D. Grünbaum, S. Viscido and J. K. Parrish. Extracting interactive
control algorithms from group dynamics of schooling fish. Proceed-
ings of the Block Island Workshop on Cooperative Control, V. Kumar,
N. E. Leonard and A. S. Morse (editors). Springer, 2004.

[108] S. Guattery and G. L. Miller. On the quality of spectral separators.
SIAM Journal on Matrix Analysis and Applications, 19 (3): 701–719,
1998.

[109] H. Guo, M.Y. Li, and Z. Shuai. A graph-theoretical approach to the
method of global Lyapunov functions. Proceedings of the American
Mathematical Society, 136: 2793–2802, 2008.

[110] T. Gustavi, D.V. Dimarogonas, M. Egerstedt, and X. Hu. On the num-
ber of leaders needed to ensure network connectivity in arbitrary di-
mensions. Proceedings of the Mediterranean Conference on Control
and Automation, June 2009.

[111] M. Haque and M. Egerstedt. Decentralized formation selection mech-
anisms inspired by foraging bottlenose dolphins. Mathematical The-
ory of Networks and Systems, July 2008.

[112] H. R. Hashemipour, S. Roy, and A. J. Laub. Decentralized struc-
tures for parallel Kalman filtering. IEEE Transactions on Automatic
Control, 33 (1): 88–94, 1988.

[113] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE
Transactions on Automatic Control, 50 (11): 1867–1872, 2005.

[114] Y. Hatano, A. Das, and M. Mesbahi. Agreement in presence of noise:
pseudogradients on random geometric networks. Proceedings of the
IEEE Conference on Decision and Control and European Control
Conference, December 2005.

[115] J. M. Hendrickx, B. D. O. Anderson, J-C. Delvenne, and V. D. Blon-
del. Directed graphs for the analysis of rigidity and persistence in
autonomous agent systems. International Journal of Robust and Non-
linear Control, 17: 960–981, 2000.

388 BIBLIOGRAPHY

[116] D. Henrion and A. Garulli (Editors). Positive Polynomials in Control.
Springer, 2005.

[117] J. Hespanha. Uniform stability of switched linear systems: extensions
of LaSalle’s invariance principle. IEEE Transactions on Automatic
Control, 49 (4): 470–482, 2004.

[118] D. J. Hoare, I. D. Couzin, J-G. Godin, and J. Krause. Context-
dependent group size choice in fish. Animal Behaviour, 67: 155–164,
2004.

[119] J. Hofbauer and K. Sigmund. Evolutionary games and population
dynamics. Cambridge University Press, 1998.

[120] R. A. Horn and C. Johnson. Matrix Analysis. Cambridge University
Press, 1985.

[121] W. Imrich and S. Klavar. Product Graphs: Structure and Recogni-
tion. Wiley, 2000.

[122] M. O. Jackson. Social and Economic Networks. Princeton University
Press, 2008.

[123] D. J. Jacobs and B. Hendrickson. An algorithm for two-dimensional
rigidity percolation: the pebble game, Journal of Computational
Physics, 137 (2): 346–365, 1997.

[124] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination of groups of mo-
bile autonomous agents using nearest neighbor rules. IEEE Transac-
tions on Automatic Control, 48 (6): 988–1001, 2003.

[125] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. Wiley, 2000.

[126] M. Ji and M. Egerstedt. Distributed coordination control of multi-
agent systems while preserving connectedness. IEEE Transactions
on Robotics, 23 (4): 693–703, 2007.

[127] M. Ji, A. Muhammad, and M. Egerstedt. Leader-based multi-agent
coordination: controllability and optimal control. Proceedings of the
American Control Conference, June 2006.

[128] F. Juhász. On the spectrum of a random graph. Colloquia Mathe-
matica Societatis János Bolyai. Algebraic Methods in Graph The-
ory,Szeged (Hungary), V. Sós and L. Lovász (editors). North-
Holland, 1978.

BIBLIOGRAPHY 389

[129] M. Juvan and B. Mohar. Laplacian eigenvalues and bandwidth-type
invariants of graphs. Journal of Graph Theory, (17): 393–407, 1993.

[130] T. Kailath. Linear Systems. Prentice-Hall, 1980.

[131] H. K. Khalil. Nonlinear Systems. Prentice-Hall, 2001.

[132] U. A. Khan and J. M. F. Moura. Distributing the Kalman filter for
large-scale systems. IEEE Transactions on Signal Processing, 56
(10): 4919–4935, 2008.

[133] Y. Kim, M. Mesbahi, and F. Y. Hadaegh. Multiple-spacecraft recon-
figurations through collision avoidance, bouncing, and stalemates.
Journal of Optimization Theory and Applications, 122 (2): 323–343,
2004.

[134] Y. Kim and M. Mesbahi. On maximizing the second smallest eigen-
value of a state-dependent graph Laplacian, IEEE Transactions on
Automatic Control, (51) 1: 116-120, 2006.

[135] J. Komlós and M. Simonovits. Szemerédi’s regularity lemma and its
applications in graph theory. Combinatorics: Paul Erd̋os is Eighty,
vol. 2. Bolyai Society Mathematical Studies 2, Budapest, 1996.

[136] S. Kirti and A. Scaglione. Scalable distributed Kalman filtering
through consensus. Proceedings of the IEEE International Confer-
ence on Acoustics, Speech and Signal Processing, April 2008.

[137] H. W. Kuhn. The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2: 83–97, 1955.

[138] H. J. Kushner. Stochastic Stability and Control. Academic Press,
1967.

[139] H. J. Kushner. Introduction to Stochastic Control. Holt, Reinhart,
and Winston, 1971.

[140] G. Lafferriere, A. Williams, J. Caughman, and J. J. P. Veerman. De-
centralized control of vehicle formations. System and Control Letters,
54: 899–910, 2005.

[141] G. Laman. On graphs and rigidity of plane skeletal structures. Journal
of Engineering Mathematics, 4 (4): 331–340, 1970.

[142] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond:
The Science of Search Engine Rankings. Princeton University Press,
2006.

390 BIBLIOGRAPHY

[143] J. Lauri and R. Scapellato. Topics in Graph Automorphism and Re-
construction. Cambridge University Press, 2003.

[144] J. Lawton, R. Beard, and B. Young. A decentralized approach to for-
mation maneuvers. IEEE Transactions on Robotics and Automation,
19 (6): 933–941, 2003.

[145] N. E. Leonard and E. Fiorelli. Virtual leaders, artificial potentials and
coordinated control of groups. Proceedings of the IEEE Conference
on Decision Control, December 2001.

[146] P. Liljeroth, J. Repp, and G. Meyer. Current-induced hydor-
gen tautomerization and conductance switching of naphthalocyanine
molecules. Science, 317: 1203–1206.

[147] Z. Lin, M. Broucke, and B. Francis. Local control strategies for
groups of mobile autonomous agents. IEEE Transactions on Auto-
matic Control, 49 (4): 622–629, 2004.

[148] L. Lovász. Combinatorial Problems and Exercises. American Math-
ematical Society, 2007.

[149] D. Luenberger. Optimization by Vector Space Methods. Wiley, 1969.

[150] J. Mann, R. Connor, P. Tyack, and H. Whitehead. Cetacean Societies.
University of Chicago Press, 2000.

[151] S. Martı́nez, J. Cortés, and F. Bullo. Motion coordination with dis-
tributed information. IEEE Control Systems Magazine, 27 (4): 75–
88, 2007.

[152] J. M. McNew and E. Klavins. Locally interacting hybrid systems with
embedded graph grammars. Proceedings of the IEEE Conference on
Decision and Control, December 2006.

[153] J. M. McNew, E. Klavins, and M. Egerstedt. Solving coverage prob-
lems with embedded graph grammars. Hybrid Systems: Computation
and Control. Springer, 2007.

[154] R. Merris. Laplacian matrices of graphs: a survey. Linear Algebra
and its Applications, 197,198: 143–176, 1994.

[155] M. Mesbahi. On a dynamic extension of the theory of graphs. Pro-
ceedings of the American Control Conference, May 2002.

BIBLIOGRAPHY 391

[156] M. Mesbahi. State-dependent graphs. Proceedings of the IEEE Con-
ference on Decision and Control, December 2003.

[157] M. Mesbahi. State-dependent graphs and their controllability prop-
erties. IEEE Transactions on Automatic Control, 50 (3): 387–392,
2005.

[158] M. Mesbahi and F. Y. Hadaegh. Formation flying control of multiple
spacecraft via graphs, matrix inequalities, and switching. AIAA Jour-
nal of Guidance, Control, and Dynamics, 24 (2): 369–377, 2001.

[159] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM,
2001.

[160] R. E. Mirollo and S. H. Strogatz. Synchronization of pulse-coupled
biological oscillators. SIAM Journal on Applied Mathematics, 50:
1645–1662, 1990.

[161] B. Mohar. Eigenvalues in combinatorial optimization. In Combi-
natorial and Graph-Theoretical Problems in Linear Algebra, R. A.
Brualdi, S. Friedland, and V. Klee (editors). Springer-Verlag, 1993.

[162] L. Moreau. Stability of multiagent systems with time-dependent
communication links. IEEE Transactions on Automatic Control, 50
(2): 169–182, 2005.

[163] A. Muhammad and M. Egerstedt. Connectivity graphs as models of
local interactions. Journal of Applied Mathematics and Computation,
168 (1): 243-269, 2005.

[164] A. Muhammad and M. Egerstedt. Positivstellensatz certificates for
non-feasibility of connectivity graphs in multi-agent coordination.
Proceedings of the IFAC World Congress, July 2005.

[165] A. Muhammad and M. Egerstedt. On the structural complexity of
multi-agent robot formations. Proceedings of the American Control
Conference, June 2004.

[166] A. Muhammad and M. Egerstedt. Control using higher order Lapla-
cians in network topologies. Proceedings of the Mathematical Theory
of Networks and Systems, July, 2006.

[167] A. Muhammad and A. Jadbabaie. Dynamic coverage verification in
mobile sensor networks via switched higher order Laplacians. In
Robotics: Science and Systems, O. Broch (editor). MIT Press, 2007.

392 BIBLIOGRAPHY

[168] A. Muhammad and A. Jadbabaie. Asymptotic stability of switched
higher order Laplacians and dynamic coverage. In Hybrid Systems:
Computation and Control, A. Bemporad, A. Bicchi, and G. Buttazzo
(editors). Lecture Notes in Computer Science, Springer, 2007.

[169] J. Munkres. Elements of Algebraic Topology. Addison-Wesley, 1993.

[170] J. D. Murray. Mathematical Biology (vols. 1 and 2). Springer, 2008.

[171] M. Nabi, M. Mesbahi, N. Fathpour, and F. Y. Hadaegh. Local esti-
mators for multiple spacecraft formation flying. Proceedings of the
AIAA Guidance, Navigation, and Control Conference, August 2008.

[172] H. S. Nalwa. Encyclopedia of Nanoscience and Nanotechnology.
American Scientific Publishers, 2004.

[173] A. Nedić, A. Ozdaglar, and P. A. Parrilo. Constrained consensus and
optimization in multi-agent network. IEEE Transactions on Auto-
matic Control, 55 (4): 922–938, 2010.

[174] M. E. J. Newman. Spread of epidemic disease on networks. Physical
Review E, 66 (1): 1–11, 2002.

[175] M. Newman, A. Barabási, and D. J. Watts. The Structure and Dy-
namics of Networks. Princeton, University Press, 2006.

[176] N. Nisan, T. Roughgarden, É. Tardos, and V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[177] H. Q. Ngo and D.-Z. Du. Notes on the complexity of switching net-
works. In Advances in Switching Networks, H. Q. Ngo and D.-Z. Du
(editors). Kluwer Academic, 307–357, 2000.

[178] M. A. Nowak. Evolutionary Dynamics. Harvard University Press,
2006.

[179] A. Nguyen and M. Mesbahi. A factorization lemma for the agreement
dynamics. Proceedings of the IEEE Conference on Decision and
Control, December 2007.

[180] P. Ögren, M. Egerstedt, and X. Hu. A control Lyapunov function ap-
proach to multi-agent coordination. IEEE Transactions on Robotics
and Automation, 18 (5): 847–851, 2002.

[181] R. Olfati-Saber and R.M. Murray. Agreement problems in networks
with directed graphs and switching topology, Proceedings of the
IEEE Conference on Decision and Control, December 2003.

BIBLIOGRAPHY 393

[182] R. Olfati-Saber and R. M. Murray. Consensus problems in networks
of agents with switching topology and time-delays. IEEE Transac-
tions on Automatic Control, 49 (9): 1520–1533, 2004.

[183] R. Olfati-Saber. Ultrafast consensus in small-world networks. Pro-
ceedings of the American Control Conference, June 2005.

[184] R. Olfati-Saber and J. S. Shamma. Consensus filters for sensor net-
works and distributed sensor fusion. Proceedings of the IEEE Con-
ference on Decision and Control, December 2005.

[185] R. Olfati-Saber. Flocking for multi-agent dynamic systems: algo-
rithms and theory. IEEE Transactions on Automatic Control, 51 (3):
401–420, 2006.

[186] R. Olfati-Saber and N. F. Sandell. Distributed tracking in sensor net-
works with limited sensing range. Proceedings of the American Con-
trol Conference, June 2008.

[187] A. Olshevsky and J. N. Tsitsiklis. Convergence rates in distributed
consensus and averaging. Proceedings of the IEEE Conference on
Decision and Control, December 2006.

[188] J. G. Oxley. Matroid Theory. Oxford University Press, 2006.

[189] D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grünbaum, and J. K.
Parrish. Oscillator models and collective motion: spatial patterns in
the dynamics of engineered and biological networks. IEEE Control
System Magazine, 27 (4): 89–105, 2007.

[190] P. A. Parrilo. Semidefinite programming relaxations for semialge-
braic problems. Mathematical Programming, Ser. B, 96 (2): 293–
320, 2003.

[191] M. Penrose. Random Geometric Graphs. Oxford University Press,
2003.

[192] S. V. Petrov. Graph grammars and graphodynamics problem. Au-
tomation and Remote Control, 10: 133–138, 1977.

[193] B. T. Polyak. Introduction to Optimization, Optimization Software,
1987.

[194] M. Porfiri and D. J. Stilwell. Consensus seeking over random
weighted directed graphs. IEEE Transactions on Automatic Control,
52 (9): 1767–1773, 2007.

394 BIBLIOGRAPHY

[195] V. V. Prasolov. Elements of Combinatorial And Differential Topology.
American Mathematical Society, 2006.

[196] E. Prisner. Graph Dynamics. Longman House, 1995.

[197] K. Pryor and K. Norris. Dolphin Societies. University of California
Press, 1998.

[198] R. Radner. Team decision problems. Annals of Mathematical Statis-
tics, 33 (3): 857–881, 1962.

[199] A. Rahmani and M. Mesbahi. On the controlled agreement problem,
Proceedings of the American Control Conference, June 2006.

[200] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt. Controllability of
multi-agent systems from a graph-theoretic perspective. SIAM Jour-
nal on Control and Optimization, 48 (1): 162–186, 2009.

[201] B. S. Rao and H. F. Durrant-Whyte. Fully decentralized algorithms
for multisensor Kalman filtering. IEE Proceedings-D, 138 (5): 413–
420, 1991.

[202] W. Ren and R. Beard, Consensus of information under dynamically
changing interaction topologies. Proceedings of the American Con-
trol Conference, June 2004.

[203] W. Ren and R. Beard. Consensus seeking in multiagent systems un-
der dynamically changing interaction topologies. IEEE Transactions
on Automatic Control, 50 (5): 655–661, 2005.

[204] W. Ren and R. Beard. Distributed Consensus in Multi-vehicle Coop-
erative Control. Springer, 2008.

[205] C. Reynolds. Flocks, herds and schools: a distributed behavioral
model. Proceedings of ACM SIGGRAPH Conference, 1987.

[206] M. Rieth and W. Schommers. Handbook of Theoretical and Compu-
tational Nanotechnology. American Scientific, 2006.

[207] S. Rosenberg. The Laplacian on a Riemannian Manifold. Lon-
don Mathematical Society Student Texts, 31. Cambridge University
Press, 1997.

[208] B. Roth. Rigid and flexible frameworks. The American Mathematical
Monthly, 88 (1): 6–21, 1981.

BIBLIOGRAPHY 395

[209] G. Rozenberg (Editor). Handbook of Graph Grammars and Comput-
ing by Graph Transformation. World Scientific, 1997.

[210] S. Salsa. Partial Differential Equations in Action: From Modelling
to Theory. Springer, 2010.

[211] J. Sandhu, M. Mesbahi, and T. Tsukamaki. Cuts and flows in relative
sensing and control of spatially distributed systems. Proceedings of
the American Control Conference, June 2005.

[212] J. Sandhu, M. Mesbahi, and T. Tsukamaki. Relative sensing net-
works: observability, estimation, and the control structure. Proceed-
ings of the IEEE Conference on Decision and Control, December
2005.

[213] E. Seneta. Non-negative Matrices and Markov Chains. Springer,
2006.

[214] R. Sepulchre, D. A. Paley, and N. E. Leonard. Stabilization of planar
collective motion with limited communication. IEEE Transactions
on Automatic Control, 53 (3): 706–719, 2008.

[215] L. Shi, K. H. Johansson, and R. M. Murray. Estimation over wireless
sensor networks: tradeoff between communication, computation, and
estimation qualities. Proceedings of the 17th IFAC World Congress,
July 2008.

[216] A. N. Shiryaev. Probability. Springer, 1995.

[217] B. Shucker, T. Murphey, and J. Bennett. A method of cooperative
control using occasional non-local interactions. Proceedings of the
American Control Conference, June 2006.

[218] E. Slijper.Whales and Dolphins. University of Michigan Press, 1976.

[219] J. J. E. Slotine and W. Wang. A study of synchronization and group
cooperation using partial contraction theory. In Cooperative Control:
The 2003 Block Island Workshop on Cooperative Control. V. Kumar,
N. Leonard, and A. S. More (editors). Springer, 2004.

[220] B. Smith, M. Egerstedt, and A. Howard. Automatic generation of
persistent formations for multi-agent networks under range con-
straints. ACM/Springer Mobile Networks and Applications Journal
(MONET), 14 (3): 322–335, June 2009.

396 BIBLIOGRAPHY

[221] D. P. Spanos, R. Olfati-Saber, and R. M. Murray. Distributed Kalman
filtering in sensor networks with quantifiable performance. Inter-
national Symposium on Information Processing in Sensor Networks,
2005.

[222] D. Spielman. Spectral Graph Theory and its Applications.
http://www.cs.yale.edu/homes/spielman/eigs/

[223] J. L. Speyer. Computation and transmission requirements for decen-
tralized linear-quadratic-Gaussian control problem. IEEE Transac-
tions on Automatic Control, 24 (2): 266–269, 1979.

[224] R. Stachnik, K. Ashlin, and K. Hamilton. Space-Station-SAMSI: A
spacecraft array for Michelson spatial interferometry. Bulletin of the
American Astronomical Society, 16: 818–827, 1984.

[225] S. S. Stanković, M. S. Stanković, and D. M. Stipanović. A consensus-
based overlapping decentralized estimator in lossy networks: stabil-
ity and denoising effects. Proceedings of the American Control Con-
ference, June 2008.

[226] D. Swaroop and J. K. Hedrick. String stability of interconnected
systems. IEEE Transactions on Automatic Control, 41 (33): 349–
357, 1996.

[227] A. Tahbaz-Salehi and A. Jadbabaie. A necessary and sufficient con-
dition for consensus over random networks. IEEE Transactions on
Automatic Control, 53 (3): 791–795, 2008.

[228] H. G. Tanner, A. Jadbabaie, and G. J. Pappas. Flocking in fixed and
switching networks. IEEE Transactions on Automatic Control, 52
(5): 863–868, 2007.

[229] H. G. Tanner. On the controllability of nearest neighbor interconnec-
tions. Proceedings of the IEEE Conference on Decision and Control,
December 2004.

[230] H. G. Tanner, A. Jadbabaie, and G. Pappas. Stable flocking of mo-
bile agents. Part II : Dynamic topology. Proceedings of the IEEE
Conference on Decision and Control, December 2003.

[231] H. G. Tanner, G. J. Pappas and V. Kumar. Leader-to-formation sta-
bility. IEEE Transactions on Robotics and Automation, 20 (3): 433–
455, 2004.

BIBLIOGRAPHY 397

[232] É. Tardos and T. Wexler. Network formation games and the potential
function method. In Algorithmic Game Theory. Cambridge Univer-
sity Press, 2007.

[233] R. E. Tarjan. Data Structures and Network Algorithms. SIAM, 1987.

[234] T. Tay and W. Whiteley. Generating isostatic frameworks, Structural
Topology, 11: 21–69, 1985.

[235] O. N. Temkin, A. V. Zeigarnik, and D. G. Bonchev. Chemical Reac-
tion Networks: A Graph-Theoretical Approach. CRC Press, 1996.

[236] W. T. Tutte. Graph Theory. Cambridge University Press, 2001.

[237] S. Utete and H. F. Durrant-Whyte. Routing for reliability in decen-
tralized sensing networks. Proceedings of the American Control Con-
ference, June 1994.

[238] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet. Novel
type of phase transition in a system of self-driven particles. Physical
Review Letters, 75 (6): 1226–1229, 1995.

[239] G. Walsh, H. Ye, and L. Bushnell. Stability analysis of networked
control systems. Proceedings of the American Control Conference,
June 1999.

[240] P. K. C. Wang and F. Y. Hadaegh. Coordination and control of multi-
ple microspacecraft moving in formation. Journal of the Astronauti-
cal Sciences, 44: 315–355, 1996.

[241] S. Wasserman and K. Faust. Social Networks Analysis: Methods and
Applications. Cambridge University Press, 2004.

[242] D. J. Watts and S. H. Strogatz. Collective dynamics of “small-world”
networks, Nature, 393: 440–442, June 1998.

[243] D. B. West. Introduction to Graph Theory. Prentice-Hall, 2001.

[244] H. Whitney. Congruent graphs and the connectivity of graphs. Amer-
ican Journal of Mathematics, 54: 150–168, 1932.

[245] E. P. Wigner. On the distribution of the roots of certain symmetric
matrices. Annals of Mathematics, 67: 325–327, 1958.

398 BIBLIOGRAPHY

[246] A. S. Willsky, M. G. Bello, D. A. Castanon, B. C. Levy, and G. C.
Verghese. Combing and updating of local estimates and regional
maps along sets of one-dimensional tracks. IEEE Transactions on
Automatic Control, 27 (4): 799–813, 1982.

[247] R. J. Wilson. Introduction to Graph Theory. Prentice-Hall, 1996.

[248] W. Woess. RandomWalks on Infinite Graphs and Groups. Cambridge
University Press, 2000.

[249] J. Wolfowitz. Products of indecomposable, aperiodic, stochastic ma-
trices. Proceedings of the American Mathematical Society, 4: 733–
737, 1963.

[250] C. W. Wu. Synchronization and convergence of linear dynamics in
random directed networks. IEEE Transactions on Automatic Control,
51 (7): 1207–1210, 2006.

[251] C. W. Wu. Synchronization in Complex Networks of Nonlinear Dy-
namical Systems. World Scientific, 2007.

[252] L. Xiao and S. Boyd. Fast linear iterations for distributed averaging.
Systems and Control Letters, 53: 65–78, 2004.

[253] L. Xiao, S. Boyd, and S. Lall. A space-time diffusion scheme for
peer-to-peer least squares estimation. Proceedings of the Interna-
tional Conference on Information Processing in Sensor Networks,
2006.

[254] F. Xue and P. R. Kumar. The number of neighbors needed for connec-
tivity of wireless networks. Wireless Networks, 10: 169–181, 2004.

[255] D. Zelazo, A. Rahmani, and M. Mesbahi. Agreement via the Edge
Laplacian. Proceedings of the IEEE Conference on Decision and
Control, December 2007.

Index

agreement, 42, 160
disagreement subspace, 277
dynamics, 43
edge, 77
inputs and outputs, 253
protocol, 42
set, 56
subspace, 45

algebraic geometry, 339
algorithm

covariance intersection, 223
gossip, 112
Lloyd’s, 185
triangulation, 351

alkanes, 39
assignments, 12
averaging, 70

Boids model, 4
boundary map, 346
broadcast protocol, 351

calmness, 328
central Voronoi tessellation, 185
centroid, 166
characteristic vector, 271
code division multiple access (CDMA),

208
complex

chain, 347
nerve, 355, 356, 358
Rips, 344, 350, 351, 358
simplicial, 344, 345

consensus, see agreement
contagion threshold, 232
contagious set, 230
control

closed loop, 366
open loop, 366

control theory, 366

controllability, 253, 262, 328
Gramian, 278
strict, 328

convex
function, 375
set, 375

coupled oscillators, 84
coverage, 12, 176

control, 356

differential inclusion, 74
distributed estimation, 42, 191
dominance region, 184

edge
consistent trajectory, 121
state density, 330

eigenvalues
algebraic multiplicity, 52, 364
geometric multiplicity, 52, 364

embedding, 178
planar, 178

endemic state, 234
epidemics, 233

multipopulation SEIR, 237
SEIR model, 233
SIS model, 249

equitable partitions, 34, 270
estimation, 149, 191

distributed, 42
distributed least squares, 193
estimator state, 149
fusion center, 193
least squares, 192
optimal, 192
posterior estimate, 214
proportional, 149

extremal graph theory, 319

face, 179

400 INDEX

flocking, 42
formation, 12, 117

alignment, 4
assignment, 117
assignment free, 151
assignments, 151
balanced, 138
balanced behavior, 136
cohesion, 4
configuration space, 123
control, 117, 169
error, 143
feasible, 118
flocking, 12
relative state, 117, 125
rigid, 121
scale invariant, 118
selection, 119
separation, 4
shape, 117
spacing, 136
symmetric phase patterns, 136
synchronization, 136
translationally invariant, 120

framework, 120
flexible, 121
rigid, 121
trajectory, 120

frequency division multiple access (FDMA),
208

functions
counter, 246
distance, 95
edge tension, 163
indicator, 160
joint density, 373
Lipschitz, 102, 363
locally Lipschitz, 82, 363
Lyapunov, 73, 228, 368
potential, 137
radially unbounded, 82
storage, 82
weak Lyapunov, 73

game theory, 293 295
best response, 300
local connection, 296
Nash equilibrium, 295, 377
potential, 299

price of stability, 296
social cost, 294
social utility, 294

games
chip firing, 243
infinite chip firing, 243
Nash equilibria, 377
prisoner’s dilemma, 377
terminating chip firing, 245

gateway node, 199
Gaussian noise, 192
geographic variation analysis, 180
graph based feedback, 163
graphs, 14

k regular, 39
adjacency, 15
adjacency matrix, 22
algebraic graph theory, 27
atomic, 61
automorphism, 33, 253, 262 264
average vertex degree, 105
bipartite, 18
bipartite graph, 325
Cartesian product, 61
circulant, 29, 141
clustering coefficient, 109
complement, 39
complete, 17, 28, 62
component, 16
connected, 15
controllability, 258
crossing generators, 353
cycle, 15, 18, 29
cycle space, 23
degree matrix, 22

input to state, 257
degree sequence, 22
diameter, 20, 92, 245
digraphs, 21, 48

balanced, 56
cut space, 24
cycle space, 23
disoriented, 56
signed path vector, 23
strongly connected, 21, 56
switching, 76
unicyclic, 239
weakly connected, 56

disconnected, 16

INDEX 401

dynamic, 167
dynamic graph controllability, 327
dynamic proximity graph, 320
edge cut set, 31
edge Laplacian, 25
edge state, 321
edge labeled, 169
edges, 15
embedded, 178
equitable partitions, 253, 269, 272

non trivial, 270
Erdős Rényi, 90
extremal, 331
floating graph, 254, 257, 260
forest, 15
Gabriel, 180
generalized vertex degree, 194
graph realization, 336
hypercube, 62
in branching, 220
in degree, 26
incidence, 15
incidence matrix, 23
infinitesimal rigidity, 121
isomorphic, 17
isoperimetric number, 33
Johnson, 17
labeled, 16
Laplacian , 24
line, 40, 341
multi population interconnection, 241
neighborhood, 15
observability, 258
orientation, 21
path, 15, 18, 256, 267, 269
path length, 20
Peterson, 17, 275
planar, 178
preferential attachment, 110
prime, 64
prime decomposition, 61
prime factor, 61
prism, 62
proximity, 10, 176, 179, 344, 350
quotient graph, 270
random, 90

almost all, 92
geometric, 108
Poisson geometric, 108

rigid graph, 122
generic, 122
minimal, 123

rigidity, 120
ring, 267
Rook’s, 62
rooted in branching, 239
rooted out branching, 28, 51
scale free networks, 110
small world networks, 109
socially optimal network, 296
spanning tree, 19, 48
spectral graph theory, 27
star, 18
state dependent, 319
subgraphs, 19

induced, 19
spanning, 19
transversal, 325

subvertex, 325
supergraph, 325
supervertices, 325
supgraphs, 19
symmetry, 253, 262
trees, 16
unlabeled, 16
vertex cut, 31
vertex degree, 22
vertices, 14
Voronoi, 180, 185
wedge, 188
weighted, 20

greedy algorithm, 300

Hamiltonian
system, 284

harmonic k forms, 348
Hodge theory, 348
Hungarian method, 152
hybrid control, 175
hypergraphs, 321
hysteresis, 168

indicator vector, 256, 260, 262
inequalities

arithmetic mean geometric mean, 236
Chebyshev, 373
Cheeger’s, 32
Chernoff, 373

402 INDEX

concentration, 92
Markov, 92, 372

inertial frame, 124
infinitesimal motion, 122
input indicator vector, 256
input symmetry, 262 264
input output agreement, 256
intermittent updates, 208
isomorphism, 323

Kalman decomposition, 283, 367
Kalman filter, 214

centralized, 214, 217
coordinator, 218
distributed, 213, 216
information filter, 215
information form, 216

Kirchoff’s current and voltage laws, 43
Kuramoto model, 84

Laplace transform, 225
Laplacian operator, 348
Laplacians

combinatorial, 347
in degree, 45
out degree, 239
spectral factorization, 46
state dependent, 163

LaSalle’s invariance principle, 73, 368
stochastic, 94

leader follower system, 282
lemma

factorization, 61, 64
Key, 331
Szemerédi’s regularity, 330

linear quadratic optimal control, 291
Lyapunov theory, 367

Markov chains, 58
Markov property, 58
matrices

T transformations, 125
essentially nonnegative, 59
characteristic, 270, 273
circulant, 30
doubly stochastic, 365
eigenvectors, 364
Euclidean distance matrix, 310
Fourier, 30

information, 215
input to state degree, 273
invariant, 37
involution, 262
Jordan decomposition, 53
Kronecker product, 61, 63, 69, 364
Kronecker sum, 63
nonnegative, 59, 365
observation, 192
permutation, 262
positive, 365
positive semidefinite, 365
pseudo inverse, 36
random, 98

semicircle law, 98
reduced Laplacian, 277
rigidity, 122
Schur complement, 366
state transition, 58
stochastic, 58, 365

multipopulation reproduction parameter,
238

Nash equilibrium, 295, 299
nearest neighbor, 320
networks

clustered, 198
formation, 294, 295
monolithic, 198
noisy, 102
synthesis, 293

nodes
floating, 253
input, 253
output, 253

observability, 253
optimal control, 280

co states, 284
Hamiltonian, 284

optimization
linear programming, 375
quadratic programming, 375
semidefinite programming, 306, 375

orientation
dissimilar, 346
similar, 346

permutation, 151

INDEX 403

point to point transfer, 283, 284
Popov Belevitch Hautus test, 258
principal submatrix, 260
probability

Chernoff bound, 93
convergence

in probability, 98, 374
in the mean, 374
with probability one, 94, 373

expected value, 372
random variable, 372
supermartingales, 96, 374
variance, 372

protocols
agreement, 42
ALOHA, 208
edge agreement, 77
max protocol, 226, 227
progressive threshold, 231
threshold, 229

pseudogradient, 102
pulsed inter cluster updates, 199

quasi static equilibrium process, 281, 282,
286

reachability, 277
realization, 122

generic, 122
regularity, 331
rendezvous, 42, 281
reproduction number, 235
resistor capacitor circuit, 43
rigidity, 122

infinitesimal, 122
trajectory, 121

roots of unity, 29

S procedure, 324
semi algebraic sets, 339
sensors, 176

omnidirectional, 176
range, 9, 176
vision, 9

signal to interference noise ratio (SINR),
212

simplicial complex
k simplex, 344, 345
face, 344

lower adjacent, 345
lower degree, 345
orientation, 345
upper adjacent, 345
upper degree, 345

social networks, 226
state

synchronization, 86
state machine, 168
stochastic process, 58
sum of squares, 74
swarming, 42
switching threshold, 168
systems
L2 gain, 371
controllability, 366
descriptor systems, 81
linear time invariant, 366
multi input multi output (MIMO), 259
passive, 82, 371
random, 95
single input single output (SISO), 259
stability, 367
strictly passive, 82

theorems
Birkhoff, 365
Geršgorin disk, 52
matrix tree, 27
Perron Frobenius, 365

triangulation, 178, 350, 351

unicycles, 135
unit simplex, 60

vector space
finite dimensional, 362
inner product, 362
norm, 362

Voronoi partition, 184

	Cover
	Contents
	Preface
	Notation
	PART 1. FOUNDATIONS
	Chapter 1. Introduction
	1.1 Hello, Networked World
	1.2 Multiagent Systems
	1.3 Information Exchange via Local Interactions
	1.4 Graph-based Interaction Models
	1.5 Looking Ahead

	Chapter 2. Graph Theory
	2.1 Graphs
	2.2 Variations on the Theme
	2.3 Graphs and Matrices
	2.4 Algebraic and Spectral Graph Theory
	2.5 Graph Symmetries

	Chapter 3. The Agreement Protocol: Part I–The Static Case
	3.1 Reaching Agreement: Undirected Networks
	3.2 Reaching Agreement: Directed Networks
	3.3 Agreement and Markov Chains
	3.4 The Factorization Lemma

	Chapter 4. The Agreement Protocol: Part II–Lyapunov and LaSalle
	4.1 Agreement via Lyapunov Functions
	4.2 Agreement over Switching Digraphs
	4.3 Edge Agreement
	4.4 Beyond Linearity

	Chapter 5. Probabilistic Analysis of Networks and Protocols
	5.1 Random Graphs
	5.2 Agreement over Random Networks
	5.3 Agreement in the Presence of Noise
	5.4 Other Probabilistic Models of Networks

	PART 2. MULTIAGENT NETWORKS
	Chapter 6. Formation Control
	6.1 Formation Specification: Shapes
	6.2 Formation Specification: Relative States
	6.3 Shape-based Control
	6.4 Relative State-based Control
	6.5 Dynamic Formation Selection
	6.6 Assigning Roles

	Chapter 7. Mobile Robots
	7.1 Cooperative Robotics
	7.2 Weighted Graph-based Feedback
	7.3 Dynamic Graphs
	7.4 Formation Control Revisited
	7.5 The Coverage Problem

	Chapter 8. Distributed Estimation
	8.1 Distributed Linear Least Squares
	8.2 Pulsed Intercluster Communication
	8.3 Implementation over Wireless Networks
	8.4 Distributed Kalman Filtering

	Chapter 9. Social Networks, Epidemics, and Games
	9.1 Diffusion on Social Networks–The Max Protocol
	9.2 The Threshold Protocol
	9.3 Epidemics
	9.4 The Chip Firing Game

	PART 3. NETWORKS AS SYSTEMS
	Chapter 10. Agreement with Inputs and Outputs
	10.1 The Basic Input-Output Setup
	10.2 Graph Theoretic Controllability: The SISO Case
	10.3 Graph Theoretic Controllability: The MIMO Case
	10.4 Agreement Reachability
	10.5 Network Feedback
	10.6 Optimal Control

	Chapter 11. Synthesis of Networks
	11.1 Network Formation
	11.2 Local Formation Games
	11.3 Potential Games and Best Response Dynamics
	11.4 Network Synthesis: A Global Perspective
	11.5 Discrete and Greedy
	11.6 Optimizing the Weighted Agreement

	Chapter 12. Dynamic Graph Processes
	12.1 State-dependent Graphs
	12.2 Graphical Equations
	12.3 Dynamic Graph Controllability
	12.4 What Graphs Can Be Realized?
	12.5 Planning over Proximity Graphs

	Chapter 13. Higher-order Networks
	13.1 Simplicial Complexes
	13.2 Combinatorial Laplacians
	13.3 Triangulations and the Rips Complex
	13.4 The Nerve Complex

	Appendix A.
	A.1 Analysis
	A.2 Matrix Theory
	A.3 Control Theory
	A.4 Probability
	A.5 Optimization and Games

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

